Laponite is a synthetic clay that is known to form gels in aqueous suspensions at low concentrations (0.01 g/cm). Although it is expected to form lyotropic liquid crystals, such phases usually do not form, as a consequence of laponite's tendency to form gels at concentrations below the threshold for liquid crystal formation.
View Article and Find Full Text PDFAqueous two-phase systems provide oil-free alternatives in the formulation of emulsions in food and other applications. Theoretical interpretation of measurements on such systems, however, is complicated by the high polydispersity of the polymers. Here, phase diagrams of demixing and interfacial tensions are determined for aqueous solutions of two large polymers present in a mass ratio of 1:1, dextran (70 kDa) and nongelling gelatin (100 kDa), with or without further addition of smaller dextran molecules (20 kDa).
View Article and Find Full Text PDFSelf-organization in anisotropic colloidal suspensions leads to a fascinating range of crystal and liquid crystal phases induced by shape alone. Simulations predict the phase behaviour of a plethora of shapes while experimental realization often lags behind. Here, we present the experimental phase behaviour of superball particles with a shape in between that of a sphere and a cube.
View Article and Find Full Text PDFElectric charge at the water-water interface of demixed solutions of neutral polymer and polyelectrolyte decreases the already ultralow interfacial tension. This is demonstrated in experiments on aqueous mixtures of dextran (neutral) and nongelling fish gelatin (charged). Upon phase separation, electric charge and a potential difference develop spontaneously at the interface, decreasing the interfacial tension purely electrostatically in a way that can be accounted for quantitatively by Poisson-Boltzmann theory.
View Article and Find Full Text PDFSmectite clay minerals and their suspensions have long been of both great scientific and applications interest and continue to display a remarkable range of new and interesting behaviour. Recently there has been an increasing interest in the properties of mixed suspensions of such clays with nanoparticles of different size, shape and charge. This review aims to summarize the current status of research in this area focusing on phase behaviour and rheological properties.
View Article and Find Full Text PDFWe present a study of the structure and rheology of mixed suspensions of montmorillonite clay platelets and Ludox TMA silica spheres at pH 5, 7, and 9. Using cryogenic transmission electron microscopy (cryo-TEM), we probe the changes in the structure of the montmorillonite suspensions induced by changing the pH and by adding silica particles. Using oscillatory and transient rheological measurements, we examine the changes in storage modulus and yield stress of the montmorillonite suspensions upon changing the pH and adding silica particles.
View Article and Find Full Text PDFIn this article, we present a study of the liquid crystal phase behavior of mixed suspensions of the natural smectite clay mineral beidellite and nonadsorbing colloidal silica particles. While virtually all smectite clays dispersed in water form gels at very low concentrations, beidellite displays a first order isotropic-nematic phase transition before gel formation (J. Phys.
View Article and Find Full Text PDFWe present a study on the macroscopic, microscopic, and rheological behavior of mixtures of natural hectorite clay and different types of anionic Ludox silica spheres. Adding silica spheres to the weak hectorite gels leads the collapse of the suspensions, while the strong gels remain space-filling, though their storage modulus and the yield stress values diminish. We discuss what kind of structural rearrangements are possibly responsible for the macroscopic and rheological changes in the clay/silica mixtures.
View Article and Find Full Text PDFHere, we present the first observation of a smectic B (Sm(B)) phase in a system of charged colloidal gibbsite platelets suspended in dimethyl sulfoxide (DMSO). The use of DMSO, a polar aprotic solvent, leads to a long range of the electrostatic Coulomb repulsion between platelets. We believe this to be responsible for the formation of the layered liquid crystalline phase consisting of hexagonally ordered particles, that is, the Sm(B) phase.
View Article and Find Full Text PDFWe report the formation of hexagonal columnar liquid crystal phases in suspensions of large (570 nm diameter), sterically stabilized, colloidal gibbsite platelets in organic solvent. In thin cells these systems display strong iridescence originating from hexagonally arranged columns that are predominantly aligned perpendicularly to the cell walls. Small angle X-ray scattering and polarization microscopy indicate the presence of orientational fluctuations in the hexagonal columnar liquid crystal phase.
View Article and Find Full Text PDFThe experimental phase diagram for aqueous mixtures of charged gibbsite platelets and silica spheres is presented. The platelets are 95 nm in diameter, and the diameter ratio between the spheres and the platelets is 0.18.
View Article and Find Full Text PDFWe investigated by means of polarization microscopy the influence of a magnetic field on the shape and director field of nematic droplets in dispersions of plate-like colloidal particles. To interpret the experimental observations, we put forward a simple theory in which we presume strong anchoring and a sphero-cylindrical droplet shape. This model allows us to extract values for the interfacial tension and the splay elastic constant from the experimental data.
View Article and Find Full Text PDFIn this paper, we present a comprehensive study of the sol-gel transitions and liquid crystal phase transitions in aqueous suspensions of positively charged colloidal gibbsite platelets at pH 4-5 over a wide range of particle concentrations (50-600 g/L) and salt concentrations (10(-4)-10(-1) M NaCl). A detailed sol-gel diagram was established by oscillatory rheological experiments. These demonstrate the presence of kinetically arrested states both at high and at low salt concentrations, enclosing a sol region.
View Article and Find Full Text PDFColloidal platelets of hydrotalcite, a layered double hydroxide, have been prepared by coprecipitation at pH 11-12 of magnesium nitrate and aluminum nitrate at two different magnesium to aluminum ratios. Changing the temperature and ionic strength during hydrothermal treatment, the platelets were tailored to different sizes and aspect ratios. Amino-modified polyisobutylene molecules were grafted onto the platelets following a convenient new route involving freeze-drying.
View Article and Find Full Text PDFWe report the results of a comprehensive study of the rheological properties of a series of mixed colloid systems where the shape of one of the components has been varied systematically. Specifically we have measured the oscillatory, transient (creep) and continuous steady shear flow behaviour of a 2.5 wt% dispersion in water of a well-characterised hectorite clay modified by the addition of a series of aluminasol colloidal particles whose shape varies systematically from rod (boehmite) to platelet (gibbsite) to sphere (alumina-coated silica), all having essentially the same smallest dimension, which is similar to that of the hectorite.
View Article and Find Full Text PDFWe demonstrate that highly polydisperse colloidal gibbsite platelets easily form an opal-like columnar crystal with striking iridescent Bragg reflections. The formation process can be accelerated by orders of magnitude under a centrifugation force of 900 g without arresting the system in a disordered glassy phase. Using transmission electron microscopy and small-angle X-ray scattering techniques, we find that the forced sedimentation is accompanied by particle size fractionation, leading to inversion of the iridescent colors.
View Article and Find Full Text PDFThe flow behaviour and rheology of colloidal dispersions are of considerable interest in many applications, for example colloidal clay particles find applications in oilfield and construction-drilling fluids. The rheological properties of such fluids can be enhanced significantly by adding colloidal particles of different size and shape. To gain insight into the mechanism of this phenomenon, we have studied model mineral-colloid systems whose shape changes systematically from a plate-like aluminasol (gibbsite), through a lath-like smectite clay (hectorite), to a rod-like aluminasol (boehmite).
View Article and Find Full Text PDFWe investigate the thermal fluctuations of the colloidal gas-liquid interface subjected to a shear flow parallel to the interface. Strikingly, we find that the shear strongly suppresses capillary waves, making the interface smoother. This phenomenon can be described by introducing an effective interfacial tension that increases with the shear rate.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2006
Confocal scanning laser microscopy has been used to quantitatively analyze the structure and dynamics of concentrated suspensions of spherical colloids in which the magnitude of the short-range attractive potential is increased by adding nonadsorbing polymers. These systems undergo a reentrant glass transition upon increasing polymer concentration. We find that melting of the glass is accompanied by significant changes in the displacement distribution and its moments.
View Article and Find Full Text PDFWe report a single step procedure to prepare monodisperse colloidal poly(methyl)methacrylate (PMMA) particles where fluorescent dyes are incorporated into the polymer network. The particles are sterically stabilized against flocculation by poly(12-hydroxystearic acid). The fluorescent dyes are RITC (rhodamine isothiocyanate)-aminostyrene (RAS) and 4-methylaminoethylmethacrylate-7-nitrobenzo-2-oxa-1,3-diazol (NBD-MAEM), which are prepared from (commercially available) RITC and 4-chloro-7-nitrobenzo-2-oxa-1,3-diazol (NBD-Cl), respectively, as starting materials.
View Article and Find Full Text PDFWe study the competition between sedimentation, gelation, and liquid crystal formation in suspensions of colloidal gibbsite platelets of five different sizes at three ionic strengths. For large particles (with diameters of 350, 420, and 570 nm) sedimentation is initially the most important factor determining the macroscopic behavior. Only after the main part of the sample has sedimented in an amorphous phase, phase separation takes place.
View Article and Find Full Text PDFWe study droplet coalescence in a molecular system with a variable viscosity and a colloid-polymer mixture with an ultralow surface tension. When either the viscosity is large or the surface tension is small enough, we observe that the opening of the liquid bridge initially proceeds at a constant speed set by the capillary velocity. In the first system we show that inertial effects become dominant at a Reynolds number of about 1.
View Article and Find Full Text PDFImpurities affect the nucleation, growth, and structure of crystals. Here we report the effect of large, spherical, polymethylmethacrylate impurities on the crystal growth of monodisperse, hard, polymethylmethacrylate colloids in a density- and optically matching apolar solvent mixture. Crystal growth, initiated at the bottom of the sample, was studied by imaging sequences of two-dimensional xy slices in the plane of the impurity's center with a laser scanning confocal microscope.
View Article and Find Full Text PDFThe liquid crystal phase behavior of a suspension of charged gibbsite [Al(OH)3] platelets is investigated. By variation of the ionic strength, we are able to tune the effective thickness-to-diameter ratio of the platelets in suspension. This enables us to experimentally test the liquid crystal phase transition scenario that was first predicted a decade ago by computer simulations for hard platelets (Veerman, J.
View Article and Find Full Text PDF