Background: Cardiac computed tomography (CT) is increasingly used to search for cardioembolic sources of acute ischemic stroke (AIS). We assessed the association between high-risk cardioembolic sources on cardiac CT and AIS.
Methods: We performed a case-control study using data from a prospective cohort including consecutive adult patients with suspected stroke who underwent cardiac CT acquired during the initial stroke imaging protocol between 2018 and 2020.
Background: Attention-Deficit/Hyperactivity Disorder (ADHD) is commonly treated with methylphenidate (MPH). Although highly effective, MPH treatment still has a relatively high non-response rate of around 30%, highlighting the need for a better understanding of treatment response. Radiomics of T1-weighted images and Diffusion Tensor Imaging (DTI) combined with machine learning approaches could offer a novel method for assessing MPH treatment response.
View Article and Find Full Text PDFObjectives: Total tumor volume (TTV) is associated with overall and recurrence-free survival in patients with colorectal cancer liver metastases (CRLM). However, the labor-intensive nature of such manual assessments has hampered the clinical adoption of TTV as an imaging biomarker. This study aimed to develop and externally evaluate a CRLM auto-segmentation model on CT scans, to facilitate the clinical adoption of TTV.
View Article and Find Full Text PDFBackground: Proximal caries datasets for training artificial intelligence (AI) algorithms commonly include clinician-annotated radiographs. These conventional annotations are susceptible to observer variability, and early caries may be missed. Micro-computed tomography (CT), while not feasible in clinical applications, offers a more accurate imaging modality to support the creation of a reference-standard dataset for caries annotations.
View Article and Find Full Text PDFObjective: To compare compressed sensing (CS) and the Cascades of Independently Recurrent Inference Machines (CIRIM) with respect to image quality and reconstruction times when 12-fold accelerated scans of patients with neurological deficits are reconstructed.
Materials And Methods: Twelve-fold accelerated 3D T2-FLAIR images were obtained from a cohort of 62 patients with neurological deficits on 3 T MRI. Images were reconstructed offline via CS and the CIRIM.
Background And Objectives: Artificial intelligence (AI) is revolutionizing Magnetic Resonance Imaging (MRI) along the acquisition and processing chain. Advanced AI frameworks have been applied in various successive tasks, such as image reconstruction, quantitative parameter map estimation, and image segmentation. However, existing frameworks are often designed to perform tasks independently of each other or are focused on specific models or single datasets, limiting generalization.
View Article and Find Full Text PDFThe early management of transferred patients with a large vessel occlusion (LVO) stroke could be improved by identifying patients who are likely to recanalize early. We aim to predict early recanalization based on patient clinical and thrombus imaging characteristics. We included 81 transferred anterior-circulation LVO patients with an early recanalization, defined as the resolution of the LVO or the migration to a distal location not reachable with endovascular treatment upon repeated radiological imaging.
View Article and Find Full Text PDFBackground: Cardiac computed tomography (CT) acquired during the initial acute stroke imaging protocol (acute cardiac CT) is increasingly used to screen for cardioembolism, but information on the long-term clinical implications of its findings is lacking.
Methods And Results: We performed a prospective, single-center cohort study in which consecutive patients with ischemic stroke underwent ECG-gated acute cardiac CT and were followed up for 2 years. The primary outcome was functional outcome assessed using the modified Rankin Scale.
(1) : For acute ischemic strokes caused by large vessel occlusion, manually assessed thrombus volume and perviousness have been associated with treatment outcomes. However, the manual assessment of these characteristics is time-consuming and subject to inter-observer bias. Alternatively, a recently introduced fully automated deep learning-based algorithm can be used to consistently estimate full thrombus characteristics.
View Article and Find Full Text PDFBackground: Computed tomography perfusion (CTP)-estimated core volume is associated with functional outcomes in acute ischemic stroke. This relationship might differ among patients, depending on brain volume.
Materials And Methods: We retrospectively included patients from the MR CLEAN Registry.
Objective: This study aimed to develop and evaluate an automatic model using artificial intelligence (AI) for quantifying vascular involvement and classifying tumor resectability stage in patients with pancreatic ductal adenocarcinoma (PDAC), primarily to support radiologists in referral centers. Resectability of PDAC is determined by the degree of vascular involvement on computed tomography scans (CTs), which is associated with considerable inter-observer variability.
Methods: We developed a semisupervised machine learning segmentation model to segment the PDAC and surrounding vasculature using 613 CTs of 467 patients with pancreatic tumors and 50 control patients.
Objective: Response to antidepressant treatment in major depressive disorder varies substantially between individuals, which lengthens the process of finding effective treatment. The authors sought to determine whether a multimodal machine learning approach could predict early sertraline response in patients with major depressive disorder. They assessed the predictive contribution of MR neuroimaging and clinical assessments at baseline and after 1 week of treatment.
View Article and Find Full Text PDFBackground: Intravenous thrombolysis (IVT) before endovascular treatment (EVT) for acute ischemic stroke might induce intracerebral hemorrhages which could negatively affect patient outcomes. Measuring white matter lesions size using deep learning (DL-WML) might help safely guide IVT administration. We aimed to develop, validate, and evaluate a DL-WML volume on CT compared to the Fazekas scale (WML-Faz) as a risk factor and IVT effect modifier in patients receiving EVT directly after IVT.
View Article and Find Full Text PDFBackground: Postoperative pancreatic fistula (POPF) is a severe complication following a pancreatoduodenectomy. An accurate prediction of POPF could assist the surgeon in offering tailor-made treatment decisions. The use of radiomic features has been introduced to predict POPF.
View Article and Find Full Text PDFBackground: Although CT perfusion (CTP) is often incorporated in acute stroke workflows, it remains largely unclear what the associated costs and health implications are in the long run of CTP-based patient selection for endovascular treatment (EVT) in patients presenting within 6 hours after symptom onset with a large vessel occlusion.
Methods: Patients with a large vessel occlusion were included from a Dutch nationwide cohort (n=703) if CTP imaging was performed before EVT within 6 hours after stroke onset. Simulated cost and health effects during 5 and 10 years follow-up were compared between CTP based patient selection for EVT and providing EVT to all patients.
For patients with colorectal cancer liver metastases (CRLM), the genetic mutation status is important in treatment selection and prognostication for survival outcomes. This study aims to investigate the relationship between radiomics imaging features and the genetic mutation status (KRAS mutation versus no mutation) in a large multicenter dataset of patients with CRLM and validate these findings in an external dataset. Patients with initially unresectable CRLM treated with systemic therapy of the randomized controlled CAIRO5 trial (NCT02162563) were included.
View Article and Find Full Text PDFBackground: Endovascular thrombectomy is standard treatment for patients with anterior circulation large vessel occlusion stroke (LVO-a). Prehospital identification of these patients would enable direct routing to an endovascular thrombectomy-capable hospital and consequently reduce time-to-endovascular thrombectomy. Electroencephalography (EEG) has previously proven to be promising for LVO-a stroke detection.
View Article and Find Full Text PDFBackground And Objectives: Endovascular thrombectomy (EVT) is standard treatment for anterior large vessel occlusion stroke (LVO-a stroke). Prehospital diagnosis of LVO-a stroke would reduce time to EVT by allowing direct transportation to an EVT-capable hospital. We aim to evaluate the diagnostic accuracy of dry electrode EEG for the detection of LVO-a stroke in the prehospital setting.
View Article and Find Full Text PDFBackground: Accurately predicting the risk of clinically relevant postoperative pancreatic fistula after pancreatoduodenectomy before surgery may assist surgeons in making more informed treatment decisions and improved patient counselling. The aim was to evaluate the predictive accuracy of a radiomics-based preoperative-Fistula Risk Score (RAD-FRS) for clinically relevant postoperative pancreatic fistula.
Methods: Radiomic features were derived from preoperative CT scans from adult patients after pancreatoduodenectomy at a single centre in the Netherlands (Amsterdam, 2013-2018) to develop the radiomics-based preoperative-Fistula Risk Score.
CT perfusion imaging is important in the imaging workup of acute ischemic stroke for evaluating affected cerebral tissue. CT perfusion analysis software produces cerebral perfusion maps from commonly noisy spatio-temporal CT perfusion data. High levels of noise can influence the results of CT perfusion analysis, necessitating software tuning.
View Article and Find Full Text PDFHeliyon
June 2023
Background: Various mortality prediction models for Transcatheter Aortic Valve Implantation (TAVI) have been developed in the past years. The effect of time on the performance of such models, however, is unclear given the improvements in the procedure and changes in patient selection, potentially jeopardizing the usefulness of the prediction models in clinical practice. We aim to explore how time affects the performance and stability of different types of prediction models of 30-day mortality after TAVI.
View Article and Find Full Text PDF