Publications by authors named "Henk Kiers"

Background: The importance of replication in the social and behavioural sciences has been emphasized for decades. Various frequentist and Bayesian approaches have been proposed to qualify a replication study as successful or unsuccessful. One of them is meta-analysis.

View Article and Find Full Text PDF

A large amount of scientific literature in social and behavioural sciences bases their conclusions on one or more hypothesis tests. As such, it is important to obtain more knowledge about how researchers in social and behavioural sciences interpret quantities that result from hypothesis test metrics, such as p-values and Bayes factors. In the present study, we explored the relationship between obtained statistical evidence and the degree of belief or confidence that there is a positive effect in the population of interest.

View Article and Find Full Text PDF

Background: Publishing study results in scientific journals has been the standard way of disseminating science. However, getting results published may depend on their statistical significance. The consequence of this is that the representation of scientific knowledge might be biased.

View Article and Find Full Text PDF

Ordinal data occur frequently in the social sciences. When applying principal component analysis (PCA), however, those data are often treated as numeric, implying linear relationships between the variables at hand; alternatively, non-linear PCA is applied where the obtained quantifications are sometimes hard to interpret. Non-linear PCA for categorical data, also called optimal scoring/scaling, constructs new variables by assigning numerical values to categories such that the proportion of variance in those new variables that is explained by a predefined number of principal components (PCs) is maximized.

View Article and Find Full Text PDF

In classical statistics, there is a close link between null hypothesis significance testing (NHST) and parameter estimation via confidence intervals. However, for the Bayesian counterpart, a link between null hypothesis Bayesian testing (NHBT) and Bayesian estimation via a posterior distribution is less straightforward, but does exist, and has recently been reiterated by Rouder, Haaf, and Vandekerckhove (2018). It hinges on a combination of a point mass probability and a probability density function as prior (denoted as the spike-and-slab prior).

View Article and Find Full Text PDF

In 2019 we wrote an article (Tendeiro & Kiers, 2019) in Psychological Methods over null hypothesis Bayesian testing and its working horse, the Bayes factor. Recently, van Ravenzwaaij and Wagenmakers (2021) offered a response to our piece, also in this journal. Although we do welcome their contribution with thought-provoking remarks on our article, we ended up concluding that there were too many "issues" in van Ravenzwaaij and Wagenmakers (2021) that warrant a rebuttal.

View Article and Find Full Text PDF

The last 25 years have shown a steady increase in attention for the Bayes factor as a tool for hypothesis evaluation and model selection. The present review highlights the potential of the Bayes factor in psychological research. We discuss six types of applications: Bayesian evaluation of point null, interval, and informative hypotheses, Bayesian evidence synthesis, Bayesian variable selection and model averaging, and Bayesian evaluation of cognitive models.

View Article and Find Full Text PDF

Opinion polarization is increasingly becoming an issue in today's society, producing both unrest at the societal level, and conflict within small scale communications between people of opposite opinion. Often, opinion polarization is conceptualized as the direct opposite of agreement and consequently operationalized as an index of dispersion. However, in doing so, researchers fail to account for the bimodality that is characteristic of a polarized opinion distribution.

View Article and Find Full Text PDF

The practice of sequentially testing a null hypothesis as data are collected until the null hypothesis is rejected is known as optional stopping. It is well known that optional stopping is problematic in the context of p value-based null hypothesis significance testing: The false-positive rates quickly overcome the single test's significance level. However, the state of affairs under null hypothesis Bayesian testing, where p values are replaced by Bayes factors, has perhaps surprisingly been much less consensual.

View Article and Find Full Text PDF

To overcome the frequently debated crisis of confidence, replicating studies is becoming increasingly more common. Multiple frequentist and Bayesian measures have been proposed to evaluate whether a replication is successful, but little is known about which method best captures replication success. This study is one of the first attempts to compare a number of quantitative measures of replication success with respect to their ability to draw the correct inference when the underlying truth is known, while taking publication bias into account.

View Article and Find Full Text PDF

Principal covariate regression (PCOVR) is a method for regressing a set of criterion variables with respect to a set of predictor variables when the latter are many in number and/or collinear. This is done by extracting a limited number of components that simultaneously synthesize the predictor variables and predict the criterion ones. So far, no procedure has been offered for estimating statistical uncertainties of the obtained PCOVR parameter estimates.

View Article and Find Full Text PDF

Principal covariates regression (PCovR) allows one to deal with the interpretational and technical problems associated with running ordinary regression using many predictor variables. In PCovR, the predictor variables are reduced to a limited number of components, and simultaneously, criterion variables are regressed on these components. By means of a weighting parameter, users can flexibly choose how much they want to emphasize reconstruction and prediction.

View Article and Find Full Text PDF

The crisis of confidence has undermined the trust that researchers place in the findings of their peers. In order to increase trust in research, initiatives such as preregistration have been suggested, which aim to prevent various questionable research practices. As it stands, however, no empirical evidence exists that preregistration does increase perceptions of trust.

View Article and Find Full Text PDF

: The diagnosis of complex posttraumatic stress disorder (CPTSD) has been suggested for inclusion in the 11th version of the International Classification of Diseases (ICD-11), with support for its construct validity coming from studies employing Latent Class Analysis (LCA) and Latent Profile Analysis (LPA). : The current study aimed to critically evaluate the application of the techniques LCA and LPA as applied in previous studies to substantiate the construct validity of CPTSD. : Both LCA and LPA were applied systematically in one sample ( = 245), replicating the setup of previous studies as closely as possible.

View Article and Find Full Text PDF

Cohen's kappa coefficient is commonly used for assessing agreement between classifications of two raters on a nominal scale. Three variants of Cohen's kappa that can handle missing data are presented. Data are considered missing if one or both ratings of a unit are missing.

View Article and Find Full Text PDF

Null hypothesis significance testing (NHST) has been under scrutiny for decades. The literature shows overwhelming evidence of a large range of problems affecting NHST. One of the proposed alternatives to NHST is using Bayes factors instead of p values.

View Article and Find Full Text PDF

Motivation: In biology, we are often faced with multiple datasets recorded on the same set of objects, such as multi-omics and phenotypic data of the same tumors. These datasets are typically not independent from each other. For example, methylation may influence gene expression, which may, in turn, influence drug response.

View Article and Find Full Text PDF

Four human values are considered to underlie individuals' environmental beliefs and behaviors: biospheric (i.e., concern for environment), altruistic (i.

View Article and Find Full Text PDF

In many situations, a researcher is interested in the analysis of the scores of a set of observation units on a set of variables. However, in medicine, it is very frequent that the information is replicated at different occasions. The occasions can be time-varying or refer to different conditions.

View Article and Find Full Text PDF

In the behavioral sciences, many research questions pertain to a regression problem in that one wants to predict a criterion on the basis of a number of predictors. Although in many cases, ordinary least squares regression will suffice, sometimes the prediction problem is more challenging, for three reasons: first, multiple highly collinear predictors can be available, making it difficult to grasp their mutual relations as well as their relations to the criterion. In that case, it may be very useful to reduce the predictors to a few summary variables, on which one regresses the criterion and which at the same time yields insight into the predictor structure.

View Article and Find Full Text PDF

MultiLevel Simultaneous Component Analysis (MLSCA) is a data-analytical technique for multivariate two-level data. MLSCA sheds light on the associations between the variables at both levels by specifying separate submodels for each level. Each submodel consists of a component model.

View Article and Find Full Text PDF

Background: In systems biology it is common to obtain for the same set of biological entities information from multiple sources. Examples include expression data for the same set of orthologous genes screened in different organisms and data on the same set of culture samples obtained with different high-throughput techniques. A major challenge is to find the important biological processes underlying the data and to disentangle therein processes common to all data sources and processes distinctive for a specific source.

View Article and Find Full Text PDF

A valid interpretation of most statistical techniques requires that one or more assumptions be met. In published articles, however, little information tends to be reported on whether the data satisfy the assumptions underlying the statistical techniques used. This could be due to self-selection: Only manuscripts with data fulfilling the assumptions are submitted.

View Article and Find Full Text PDF

Earlier research has shown that bootstrap confidence intervals from principal component loadings give a good coverage of the population loadings. However, this only applies to complete data. When data are incomplete, missing data have to be handled before analysing the data.

View Article and Find Full Text PDF