Publications by authors named "Henk Jonkers"

In this study, the applicability of two bacteria-based healing agents (e.g., poly-lactic acid and polyhydroxyalkanoate) in blast furnace slag cement (BFSC) mortar has been assessed.

View Article and Find Full Text PDF

Since self-healing of cementitious materials can theoretically improve the service-life of concrete structures, it has gathered significant attention from both researchers and industry during the last two decades. Many researchers have proposed different methods to assess and quantify the self-healing capacity (i.e.

View Article and Find Full Text PDF

The promise of crystal composites with direction-specific properties is an attractive prospect for diverse applications; however, synthetic strategies for realizing such composites remain elusive. Here, we demonstrate that anisotropic agarose gel networks can mechanically "mold" calcite crystal growth, yielding anisotropically structured, single-crystal composites. Drying and rehydration of agarose gel films result in the affine deformation of their fibrous networks to yield fiber alignment parallel to the drying plane.

View Article and Find Full Text PDF

Background: Far reaching sub-specialization tends to become obligatory for surgeons in most Western countries. It is suggested that exposure of surgeons to emergency laparotomy after trauma is ever declining. Therefore, it can be questioned whether a generalist (i.

View Article and Find Full Text PDF

The current paper presents a bacteria-based self-healing cementitious composite for application in low-temperature marine environments. The composite was tested for its crack-healing capacity through crack water permeability measurements, and strength development through compression testing. The composite displayed an excellent crack-healing capacity, reducing the permeability of cracks 0.

View Article and Find Full Text PDF

The suitability of using a spore-forming ureolytic strain, Bacillus sphaericus, was evaluated for self-healing of concrete cracks. The main focus was on alkaline tolerance, calcium tolerance, oxygen dependence, and low-temperature adaptability. Experimental results show that B.

View Article and Find Full Text PDF

CO2 sequestration may be an avenue to mitigate climate change. CO2 sequestration by mineral carbonation can be achieved by the reaction of CO2 with alkaline silicates. Here, we evaluate how alkaline silicate mineral-based CO2 sequestration can be achieved using environmental biotechnological processes.

View Article and Find Full Text PDF

In this study, members of a specific group of thin (6-14 µm filament diameter), vacuolated Beggiatoa-like filaments from six different hypersaline microbial mats were morphologically and phylogenetically characterized. Therefore, enrichment cultures were established, filaments were stained with fluorochromes to show intracellular structures and 16S rRNA genes were sequenced. Morphological characteristics of Beggiatoa-like filaments, in particular the presence of intracellular vacuoles, and the distribution of nucleic acids were visualized.

View Article and Find Full Text PDF

Pigment analysis in an intact hypersaline microbial mat by hyperspectral imaging revealed very patchy and spatially uncorrelated distributions of photopigments Chl a and BChl a/c, which are characteristic photopigments for oxygenic (diatoms and cyanobacteria) and anoxygenic phototrophs (Chloroflexaceae). This finding is in contrast to the expectation that these biomarker pigments should be spatially correlated, as oxygenic phototrophs are thought to supply the Chloroflexaceae members with organic substrates for growth. We suggest that the heterogeneous occurrence is possibly due to sulfide, whose production by sulfate-reducing bacteria may be spatially heterogeneous in the partially oxic photic zone of the mat.

View Article and Find Full Text PDF

The aim of this study was to investigate the supposed vertical diel migration and the accompanying physiology of Beggiatoa bacteria from hypersaline microbial mats. We combined microsensor, stable-isotope, and molecular techniques to clarify the phylogeny and physiology of the most dominant species inhabiting mats of the natural hypersaline Lake Chiprana, Spain. The most dominant morphotype had a filament diameter of 6 to 8 microm and a length varying from 1 to >10 mm.

View Article and Find Full Text PDF

In dense stratified systems such as microbial mats, photosynthesis and respiration are coupled due to a tight spatial overlap between oxygen-producing and -consuming microorganisms. We combined microsensors and a membrane inlet mass spectrometer with two independent light sources emitting in the visible (VIS) and near infrared (NIR) regions to study this coupling in more detail. Using this novel approach, we separately quantified the activity of the major players in the oxygen cycle in a hypersaline microbial mat: gross photosynthesis of cyanobacteria, NIR light-dependent respiration of Chloroflexus-like bacteria (CLB) and respiration of aerobic heterotrophs.

View Article and Find Full Text PDF

We studied the diversity of Chloroflexus-like bacteria (CLB) in a hypersaline phototrophic microbial mat and assayed their near-infrared (NIR) light-dependent oxygen respiration rates. PCR with primers that were reported to specifically target the 16S rRNA gene from members of the phylum Chloroflexi resulted in the recovery of 49 sequences and 16 phylotypes (sequences of the same phylotype share more than 96% similarity), and 10 of the sequences (four phylotypes) appeared to be related to filamentous anoxygenic phototrophic members of the family Chloroflexaceae. Photopigment analysis revealed the presence of bacteriochlorophyll c (BChlc), BChld, and gamma-carotene, pigments known to be produced by phototrophic CLB.

View Article and Find Full Text PDF

Microbial mats are characterized by high primary production but low growth rates, pointing to a limitation of growth by the lack of nutrients or substrates. We identified compounds that instantaneously stimulated photosynthesis rates and oxygen consumption rates in a hypersaline microbial mat by following the short-term response (c. 6 h) of these processes to addition of nutrients, organic and inorganic carbon compounds, using microsensors.

View Article and Find Full Text PDF

The vertical distribution of magnetotactic bacteria along various physico-chemical gradients in freshwater microcosms was analyzed by a combined approach of viable cell counts, 16S rRNA gene analysis, microsensor profiling and biogeochemical methods. The occurrence of magnetotactic bacteria was restricted to a narrow sediment layer overlapping or closely below the maximum oxygen and nitrate penetration depth. Different species showed different preferences within vertical gradients, but the largest proportion (63-98%) of magnetotactic bacteria was detected within the suboxic zone.

View Article and Find Full Text PDF

The benthic microbial mat community of the only permanent hypersaline natural inland lake of Western Europe, 'La Salada de Chiprana', northeastern Spain, was structurally and functionally analyzed. The ionic composition of the lake water is characterized by high concentrations of magnesium and sulfate, which were respectively 0.35 and 0.

View Article and Find Full Text PDF

Streptomyces coelicolor differentiates on solid agar media by forming aerial hyphae that septate into spores. We here show that differentiation also occurs in standing liquid minimal media. After a period of submerged growth, hyphae migrate to the air interface, where they become fixed by a rigid reflecting film.

View Article and Find Full Text PDF