We present a pilot study of an annotation schema representing problems and their attributes, along with their relationship to temporal modifiers. We evaluated the ability for humans to annotate clinical reports using the schema and assessed the contribution of semantic annotations in determining the status of a problem mention as active, inactive, proposed, resolved, negated, or other. Our hypothesis is that the schema captures semantic information useful for generating an accurate problem list.
View Article and Find Full Text PDFObjective: Natural language processing (NLP) tasks are commonly decomposed into subtasks, chained together to form processing pipelines. The residual error produced in these subtasks propagates, adversely affecting the end objectives. Limited availability of annotated clinical data remains a barrier to reaching state-of-the-art operating characteristics using statistically based NLP tools in the clinical domain.
View Article and Find Full Text PDFBackground: Gastroenterology specialty societies have advocated that providers routinely assess their performance on colonoscopy quality measures. Such routine measurement has been hampered by the costs and time required to manually review colonoscopy and pathology reports. Natural language processing (NLP) is a field of computer science in which programs are trained to extract relevant information from text reports in an automated fashion.
View Article and Find Full Text PDFObjective: The quality of colonoscopy procedures for colorectal cancer screening is often inadequate and varies widely among physicians. Routine measurement of quality is limited by the costs of manual review of free-text patient charts. Our goal was to develop a natural language processing (NLP) application to measure colonoscopy quality.
View Article and Find Full Text PDFInformation extraction applications that extract structured event and entity information from unstructured text can leverage knowledge of clinical report structure to improve performance. The Subjective, Objective, Assessment, Plan (SOAP) framework, used to structure progress notes to facilitate problem-specific, clinical decision making by physicians, is one example of a well-known, canonical structure in the medical domain. Although its applicability to structuring data is understood, its contribution to information extraction tasks has not yet been determined.
View Article and Find Full Text PDFIn this paper we describe an algorithm called ConText for determining whether clinical conditions mentioned in clinical reports are negated, hypothetical, historical, or experienced by someone other than the patient. The algorithm infers the status of a condition with regard to these properties from simple lexical clues occurring in the context of the condition. The discussion and evaluation of the algorithm presented in this paper address the questions of whether a simple surface-based approach which has been shown to work well for negation can be successfully transferred to other contextual properties of clinical conditions, and to what extent this approach is portable among different clinical report types.
View Article and Find Full Text PDFAMIA Annu Symp Proc
November 2009
Natural language processing applications that extract information from text rely on semantic representations. The objective of this paper is to describe a methodology for creating a semantic representation for information that will be automatically extracted from textual clinical records. We illustrate two of the four steps of the methodology in this paper using the case study of encoding information from dictated dental exams: (1) develop an initial representation from a set of training documents and (2) iteratively evaluate and evolve the representation while developing annotation guidelines.
View Article and Find Full Text PDFRecent years have seen a huge increase in the amount of biomedical information that is available in electronic format. Consequently, for biomedical researchers wishing to relate their experimental results to relevant data lurking somewhere within this expanding universe of on-line information, the ability to access and navigate biomedical information sources in an efficient manner has become increasingly important. Natural language and text processing techniques can facilitate this task by making the information contained in textual resources such as MEDLINE more readily accessible and amenable to computational processing.
View Article and Find Full Text PDF