Publications by authors named "Henk F Arnoldus"

When a small particle is located near an interface, its electric dipole moment can be induced by laser irradiation. Since the laser light reflects at the interface, this leads to an interference pattern, and the dipole moment is determined by this total field. In addition, the dipole radiation emitted by the particle reflects at the interface, and this field adds to the external field.

View Article and Find Full Text PDF

An oscillating magnetic dipole moment emits radiation. We assume that the dipole is embedded in a medium with relative permittivity ϵ and relative permeability μ, and we have studied the effects of the surrounding material on the flow lines of the emitted energy. For a linear dipole moment in free space the flow lines of energy are straight lines, coming out of the dipole.

View Article and Find Full Text PDF

We have studied the statistics of fluorescent photons emitted by a two-state atom in a laser beam in the limit where either the detuning or the Rabi frequency is large. For this case, the spectrum of resonance fluorescence has three separated lines. We have obtained closed form expressions for the conditional probability density for the emission of the nth photon and for the probability for emission of n photons in a time interval [0,T].

View Article and Find Full Text PDF

Detection of photons from electromagnetic radiation can be considered as the appearance of random events on the time axis. When an attenuator is placed in front of the detector, which attenuates the intensity by a factor of α, the statistical properties of the detected photons are altered. We show that simple relations exist between the statistical functions of the photons detected from the attenuated field and the same functions for the photons that would be detected from the unattenuated field.

View Article and Find Full Text PDF
Damping of the dipole vortex.

J Opt Soc Am A Opt Image Sci Vis

May 2011

When a circular electric dipole moment, rotating in the x-y plane, is embedded in a material with relative permittivity ε(r) and relative permeability μ(r), the field lines of energy flow of the emitted radiation are dramatically influenced by the surrounding material. For emission in free space, the field lines swirl around the z axis and lie on a cone. The direction of rotation of the field lines around the z axis is the same as the direction of rotation of the dipole moment.

View Article and Find Full Text PDF

The field lines of energy flow of the radiation emitted by a linear dipole in free space are straight lines, running radially outward from the source. When the dipole is embedded in a medium, the field lines are curves when the imaginary part of the relative permittivity is finite. It is shown that due to the damping in the material all radiation is emitted in directions perpendicular to the dipole axis, whereas for a dipole in free space the radiation is emitted in all directions except along the dipole axis.

View Article and Find Full Text PDF

We consider radiation emitted by an electric dipole close to a mirror. We have studied the field lines of the Poynting vector, representing the flow lines of the electromagnetic energy, and we show that numerous singularities and subwavelength optical vortices appear in this energy flow pattern. We also show that the field line pattern in the plane of the mirror contains a singular circle across which the field lines change direction.

View Article and Find Full Text PDF

The energy flow lines (field lines of the Poynting vector) for radiation emitted by a dipole are in general curves, rather than straight lines. For a linear dipole the field lines are straight, but when the dipole moment of a source rotates, the field lines wind numerous times around an axis, which is perpendicular to the plane of rotation, before asymptotically approaching a straight line. We consider an elliptical dipole moment, representing the most general state of oscillation, and this includes the linear dipole as a special case.

View Article and Find Full Text PDF

The energy flow lines (field lines of the Poynting vector) of electric dipole radiation exhibit a vortex structure in the near field when the dipole moment of the source is in circular rotation. The spatial extend of this vortex is smaller than a wavelength and may not be observable by a measurement in the near field. We show that the rotation of the field lines close to the source affects the image of the dipole in the far field, and this opens the possibility for observation of this vortex by a measurement in the far field.

View Article and Find Full Text PDF

The field lines of the Poynting vector for light emitted by a dipole with a rotating dipole moment show a vortex pattern near the location of the dipole. In the far field, each field line approaches a straight line, but this line does not appear to come exactly from the location of the dipole. As a result, the image of the dipole in its plane of rotation seems displaced.

View Article and Find Full Text PDF

When light is incident on a mirror, it induces a current density on its surface. This surface current density emits radiation, which is the observed reflected field. We consider a monochromatic incident field with an arbitrary spatial dependence, and we derive an integral equation for the Fourier-transformed surface current density.

View Article and Find Full Text PDF

Electromagnetic radiation incident upon a perfect mirror induces a current density on the surface of the conducting material of the mirror. It is shown that this surface current density can be expressed directly in terms of the source current density, which generates the incident field, without evaluating the electric and magnetic fields first.

View Article and Find Full Text PDF

Scattering of electromagnetic radiation by an object of arbitrary shape or a structured surface, infinite in extent, is considered. When radiation is incident on an interface separating vacuum from a material medium, a current density is induced in the bulk and a surface current density may appear on the boundary surface. The electromagnetic field is then the sum of the incident field and the field generated by the current densities.

View Article and Find Full Text PDF

Reflection and refraction of electromagnetic multipole radiation by an interface is studied. The multipole can be electric or magnetic and is of arbitrary order (dipole, quadrupole). From the angular spectrum representation of the radiation emitted by the multipole, I have obtained the angular spectrum representations of the reflected and transmitted fields, which involve the Fresnel reflection and transmission coefficients.

View Article and Find Full Text PDF

Radiation emitted by an electric dipole consists of traveling and evanescent plane waves. Usually, only the traveling waves are observable by a measurement in the far field, since the evanescent waves die out over a length of approximately a wavelength from the source. We show that when the radiation is passed through an interface with a medium with an index of refraction larger than the index of refraction of the embedding medium of the dipole, a portion of the evanescent waves are converted into traveling waves, and they become observable in the far field.

View Article and Find Full Text PDF

Electric dipole radiation consists of traveling and evanescent plane waves. When radiation is detected in the far field, only the traveling waves will contribute to the intensity distribution, as the evanescent waves decay exponentially. We propose a method to spatially separate the traveling and evanescent waves before detection.

View Article and Find Full Text PDF

The angular spectrum representation of the electromagnetic Green's tensor has a part that is a superposition of exponentially decaying waves in the +z and -z directions (evanescent part) and a part that is a superposition of traveling waves, both of which are defined by integral representations. We have derived an asymptotic expansion for the z dependence of the evanescent part of the Green's tensor and obtained a closed-form solution in terms of the Lommel functions, which holds in all space. We have shown that the traveling part can be extracted from the Green's tensor by means of a filter operation on the tensor, without regard to the angular spectrum integral representation of this part.

View Article and Find Full Text PDF