Publications by authors named "Hengwei Qiu"

Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) with diverse chemistry, structures, and properties have emerged as appealing materials for miniaturized solid-state devices. The incorporation of MOF films in these devices, such as the integrated microelectronics and nanophotonics, requires robust patterning methods. However, existing MOF patterning methods suffer from some combinations of limited material adaptability, compromised patterning resolution and scalability, and degraded properties.

View Article and Find Full Text PDF

Microscale patterning of colloidal perovskite nanocrystals (NCs) is essential for their integration in advanced device platforms, such as high-definition displays. However, perovskite NCs usually show degraded optical and/or electrical properties after patterning with existing approaches, posing a critical challenge for their optoelectronic applications. Here we achieve nondestructive, direct optical patterning of perovskite NCs with rationally designed carbene-based cross-linkers and demonstrate their applications in high-performance light-emitting diodes.

View Article and Find Full Text PDF

3D printing of inorganic materials with nanoscale resolution offers a different materials processing pathway to explore devices with emergent functionalities. However, existing technologies typically involve photocurable resins that reduce material purity and degrade properties. We develop a general strategy for laser direct printing of inorganic nanomaterials, as exemplified by more than 10 semiconductors, metal oxides, metals, and their mixtures.

View Article and Find Full Text PDF

Epitaxial heterostructures of colloidal lead halide perovskite nanocrystals (NCs) with other semiconductors, especially the technologically important metal chalcogenides, can offer an unprecedented level of control in wavefunction design and exciton/charge carrier engineering. These NC heterostructures are ideal material platforms for efficient optoelectronics and other applications. Existing methods, however, can only yield heterostructures with random connections and distributions of the two components.

View Article and Find Full Text PDF

CsPbBr-PbSBr Janus nanocrystals (NCs) are the only nanomaterial where the epitaxial structure of perovskite and chalcogenide materials has been realized at the nanoscale, but their exciton dynamics mechanism has not yet been thoroughly investigated or applied in photodetection applications. This work reports an attractive device performance of perovskite photoconductors based on epitaxial CsPbBr-PbSBr Janus NCs, as well as the carrier relaxation and transfer mechanism of the heterojunction. By a combination of transient optical absorption and quantum dynamics simulation, it is demonstrated that the photogenerated holes on CsPbBr can be successfully extracted by PbSBr, while the hole transfer proceeds about three times faster than energy loss and remains "hot" for about 300 fs.

View Article and Find Full Text PDF

Self-assembled inorganic nanocrystal (NC) superlattices are powerful material platforms with diverse structures and emergent functionalities. However, their applications suffer from the low structural stability against solvents and other stimuli, due to the weak interparticle interactions. Existing strategies to stabilize NC superlattices typically require the design and incorporation of special ligands prior to self-assembly and are only applicable to superlattices of certain NCs, ligands, and structures.

View Article and Find Full Text PDF

Recent developments in the perovskite field have aimed at exploring cluster-based organic-inorganic copper(I) halides as novel luminescent materials because of their low toxicity and structural diversity. However, the poor framework stability and low dispersion in solvent constitute the key challenges to their practical applications such as luminescent inks. Herein, we report the preparation of highly luminescent inks via one-pot solution synthesis, which consisted of ionic CuI clusters (tetrabutylammonium copper iodide) coupled with polymer polyvinylpyrrolidone (PVP).

View Article and Find Full Text PDF
Article Synopsis
  • Surface chemistry is key for integrating colloidal nanocrystals (NCs) in optoelectronic devices like displays and sensors, but the role of photochemistry in this process is not fully understood.
  • The study highlights how designing nitrene- and carbene-based photocrosslinkers can enhance the patterning capabilities and photophysical characteristics of quantum dots (QDs), crucial for maintaining their luminescent properties.
  • The resulting patterned QLEDs achieved an impressive external quantum efficiency of approximately 12% and a lifespan exceeding 4800 hours, suggesting significant advancements in the integration of NCs for high-performance devices.
View Article and Find Full Text PDF

Precise microscale patterning is a prerequisite to incorporate the emerging colloidal metal halide perovskite nanocrystals into advanced, integrated optoelectronic platforms for widespread technological applications. Current patterning methods suffer from some combination of limitations in patterning quality, versatility, and compatibility with the workflows of device fabrication. This work introduces the direct optical patterning of perovskite nanocrystals with ligand cross-linkers or DOPPLCER.

View Article and Find Full Text PDF

Among the lead halide perovskites, the photoluminescence quantum yields (PLQYs) of perovskite quantum dots (PQDs) in the violet region are the very lowest. This is an obstacle to the optical applications across the entire visible area based on perovskite materials. Herein, we report a novel strontium (Sr)-substitution along with chlorine passivation strategy to enhance the PLQYs of CsPbCl PQDs.

View Article and Find Full Text PDF

Lead halide perovskite quantum dots (PQDs) are reported as a promising branch of perovskites, which have recently emerged as a field in luminescent materials research. However, before the practical applications of PQDs can be realized, the problem of poor stability has not yet been solved. Herein, we propose a trioctylphosphine (TOP)-assisted pre-protection low-temperature solvothermal synthesis of highly stable CsPbBr/TiO nanocomposites.

View Article and Find Full Text PDF

Very recently, ultrathin perovskite nanostructures, with the advantages of perovskite and ultrathin properties, have received an enormous level of interest due to their many fascinating properties, such as a strong quantum confinement effect and a large specific surface area. In spite of this incredible success of perovskite nanocrystals (NCs), the development of perovskite NCs is still in its infancy, and the production of high-quality ultrathin perovskite nanostructures has been a hot topic in the fields of nanoscience and nanotechnology. Herein, we demonstrate that ultrathin CsPbBr3 perovskite nanosheets (NSs) can be obtained by a simple mixing of precursor-ligand complexes under ambient conditions.

View Article and Find Full Text PDF

Very recently, two-dimensional (2D) perovskite nanosheets (PNSs), taking the advantages of perovskite as well as the 2D structure properties, have received an enormous level of interest throughout the scientific community. In spite of this incredible success in perovskite nanocrystals (NCs), self-assembly of many nanostructures in metal halide perovskites has not yet been realized, and producing highly efficient red-emitting PNSs remains challenging. In this Letter, we show that by using CsPbBrI perovskite nanoparticles (NPs) as a building block, PNSs can emerge spontaneously under high ambient pressure via template-free self-assembly without additional complicated operation.

View Article and Find Full Text PDF

Three-dimensional (3D) wearable piezoresistive sensors with excellent performance are urgently needed in many emerging fields. Herein, a hybrid piezoresistive sensor with 3D structure, which is framed by loofah sponge and coated with reduced graphene oxide modified with carbon black nanoparticles (rGO-CB@LS), was obtained via a facile solvothermal method. The ingenious use of loofah sponge (LS) provides a 3D highly ordered structure with excellent flexibility for the hybrid sensor, which assists the sensor free from the dependence on an organic substrate and eliminates the pollution to the environment.

View Article and Find Full Text PDF

Among the leading energy materials, metal tri-halide perovskite quantum dots (PQDs) with outstanding optoelectronic properties are at the forefront of current research. However, enormous challenges remain to be addressed, including hazardous components and poor stability, before achieving practical applications of PQDs. Although there are diverse methods to improve the stability of PQDs, it is of central importance to avoid damage during operation.

View Article and Find Full Text PDF

We show that CsPbBr nanowires (NWs) are formed by the hierarchical arrangement of individual nanoparticles (NPs), and reversible transformation from NWs to NPs is also achieved by anion exchange.

View Article and Find Full Text PDF

Large-area film deposition and high material utilization ratio are the crucial factors for large-scale application of perovskite optoelectronics. Recently, all-inorganic halide perovskite CsPbBr has attracted great attention because of its high phase stability, thermal stability, and photostability. However, most reported perovskite devices were fabricated by spin-coating, suffering from a low material utilization ratio of 1% and a small coverage area.

View Article and Find Full Text PDF

To optimize the performance of silver nanowire (Ag NW) film heaters and explore the effect of graphene on a film, we introduced poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) and graphene modified with ethyl cellulose (graphene-EC) into the film. The high-quality and well-dispersed graphene-EC was synthesized from graphene obtained by electrochemical exfoliation as a precursor. The transparent film heaters were fabricated via spin-coating.

View Article and Find Full Text PDF

We present a new route for the synthesis of Ag nanopore-inlay-nanogap structures using creviced graphene-shell encapsulated Cu nanoparticles (Cu@G-NPs) as the sacrificial templates. The as-synthesized integrated Ag-core@graphene-shell@Ag-jacket nanoparticles (AgC@G@AgJ-NPs) presents "chrysanthemum" shapes that contain abundant sub-10 nm size intraparticle nanopores/nanogaps, which can generate huge enhanced electromagnetic fields to support SERS activity, resulting in an average EF > 10 due to a high-density of intraparticle and interparticle "hot spots".

View Article and Find Full Text PDF

The branched hierarchical heteronanowires have been widely studied for optoelectronics application because of their unique electronic and photonic performances. Here, we successfully synthesized Ag nanowire-ZnO-branched nanorod heteronanowires based on an improved hydrothermal method. Then we fabricated single heteronanowire across a Au electrode pair with different gap widths and parallel-aligned heteronanowires on a Au interdigitated electrode with a dielectrophoresis method, indicating the flexibility and operability of the dielectrophoresis assembly method.

View Article and Find Full Text PDF

Graphene shells with a controllable number of layers were directly synthesized on Cu nanoparticles (CuNPs) by chemical vapor deposition (CVD) to fabricate a graphene-encapsulated CuNPs (G/CuNPs) hybrid system for surface-enhanced Raman scattering (SERS). The enhanced Raman spectra of adenosine and rhodamine 6G (R6G) showed that the G/CuNPs hybrid system can strongly suppress background fluorescence and increase signal-to-noise ratio. In four different types of SERS systems, the G/CuNPs hybrid system exhibits more efficient SERS than a transferred graphene/CuNPs hybrid system and pure CuNPs and graphene substrates.

View Article and Find Full Text PDF

We report a kind of electric field tunable transparent and flexible capacitor with the structure of graphene-Bi1.5MgNb1.5O7 (BMN)-graphene.

View Article and Find Full Text PDF

We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu nanoparticles wrapped by a monolayer graphene shell were directly synthesized on flat quartz by chemical vapor deposition in a mixture of methane and hydrogen. The G/CuNPs showed an excellent SERS enhancement activity for adenosine.

View Article and Find Full Text PDF