Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator. The construction is based on the minimum vertex cover of a bipartite graph.
View Article and Find Full Text PDFQuantum transport in molecular junctions has attracted great attention. The charge motion in a molecular junction can cause geometric deformation, leading to strong electron phonon coupling, which was often overlooked. We have formulated a nearly exact method to assess the time-dependent current and occupation number in the molecular junction modeled by the electron-phonon coupled bridge state using the time-dependent density matrix renormalization group (TD-DMRG) method.
View Article and Find Full Text PDFDensity matrix renormalization group (DMRG) and its time-dependent variants have found widespread applications in quantum chemistry, includingelectronic structure of complex bio-molecules, spectroscopy for molecular aggregates, and charge transport in bulk organic semiconductors. The underlying wavefunction ansatz for DMRG, matrix product state (MPS), requires mapping degrees of freedom (DOF) into a one-dimensional topology. DOF ordering becomes a crucial factor for DMRG accuracy.
View Article and Find Full Text PDFPolymeric ionic liquids have emerged recently as a promising alternative to traditional polymers as the polymer electrolyte membrane materials of choice because of their strongly decoupled dynamics between the polymer backbone and the counterions. Knowledge of proton exchange and transport mechanism in such materials is critical to the design and development of new poly(ionic liquid) materials with improved electrochemical properties. Our NMR results show that the proton exchange between the labile proton of the diethylmethylammonium (NH122) cation and HO molecules is accompanied by a concerted configuration rearrangement of the ammonium.
View Article and Find Full Text PDFIt is known that hierarchical structure plays a key role in many unique material properties such as self-cleaning effect of lotus leaves and the antifogging property of the compound eyes of mosquitoes. This study reports a series of highly ordered mesoporous Nafion membranes with unique hierarchical structural features at the nanometer scale. Using NMR, we show for the first time that, at low RH conditions, the proton in the ionic domains migrates via a surface diffusion mechanism and exhibits approximately 2 orders of magnitude faster transport than that in the nanopores, whereas the nanopores play a role of reservoir and maintain water and thereby conductivity at higher temperature and lower humidities.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
November 2006
Flame atomic emission spectrometry (FAES) is frequently used to analyze various alkaline elements. The effects of concentrated oxy-organics in water solution on the radiation intensity of alkaline elements FAES were studied. The species and concentration of oxy-organics may affect the radiation intensity variation amplitude of alkaline elements and also the tendency of the mutation can be different dramatically.
View Article and Find Full Text PDFThe fast mixing of aqueous solutions of calcium chloride and sodium carbonate could immediately result in amorphous calcium carbonate (ACC). Under vigorous stirring, the formed ACC in the precipitation system will dissolve first and, then, transform within minutes to produce crystalline forms of vaterite and calcite. After that, the solution-mediated mechanism dominates the transformation of the thermodynamically unstable vaterite into the thermodynamically stable calcite.
View Article and Find Full Text PDF