Recently, biomembrane nanostructures, such as liposomes, cell membrane-coated nanostructures, and exosomes, have demonstrated promising anticancer therapeutic effects. These nanostructures possess remarkable biocompatibility, multifunctionality, and low toxicity. However, their therapeutic efficacy is impeded by chemoresistance and radiotherapy resistance, which are closely associated with autophagy.
View Article and Find Full Text PDFCancer is the second leading cause of death worldwide. Its incidence has been increasing in recent years, and it is becoming a major threat to human health. Conventional cancer treatment strategies, including surgery, chemotherapy, and radiotherapy, have faced problems such as drug resistance, toxic side effects and unsatisfactory therapeutic efficacy.
View Article and Find Full Text PDFMini Rev Med Chem
August 2023
Tumors are a major cause of human mortality worldwide, and the rapid development of nanomaterials (NMs) for tumor therapy and drug delivery has provided new treatment methods. However, NMs' high immunogenicity, short circulation time, and low specificity limit their application in tumor therapy. In recent years, bionanomaterials using cell membranes have emerged to overcome the shortcomings of monomeric NMs.
View Article and Find Full Text PDFTumor vaccination is a promising approach for tumor immunotherapy because it presents high specificity and few side effects. However, tumor vaccines that contain only a single tumor antigen can allow immune system evasion by tumor variants. Tumor antigens are complex and heterogeneous, and identifying a single antigen that is uniformly expressed by tumor cells is challenging.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2022
The translation of nanoparticles in cancer treatment is limited by their low drug-loading capacity, poor colloidal stability, insufficient tumor penetration, and uncontrolled drug release. Herein, gelatin/nanochitosan/doxorubicin nanoparticles (GND) are developed by crosslinking nanochitosan (NCT) with gelatin for doxorubicin delivery. The hydrophilicity and stability properties of GND allow it to be protected and have a long circulation time in blood.
View Article and Find Full Text PDFBacterial nanotubes are tubular membranous structures bulging from the cell surface that can connect neighboring bacteria for the exchange of intercellular substances. However, little is known about the formation and function of bacterial nanotubes under the stress of antimicrobial materials. Herein, an imidazolium-type cationic poly(ionic liquid) (PIL) and corresponding PIL membranes with antimicrobial properties were synthesized.
View Article and Find Full Text PDFHypoxia can aggravate the conditions of many oxygen-deficiency-aggravated diseases (ODAD), such as cancer, ischemic heart disease, and chronic wounds. Photosynthetic microalgae can alleviate the hepatotoxicity of the local microenvironment by producing oxygen. In addition, microalgae extracts have antitumor, anti-inflammatory, antibacterial, and antioxidant effects.
View Article and Find Full Text PDFTungsten Disulfide (WS) films, as one of the most attractive members in the family of transition metal dichalcogenides, were synthesized typically on SiO/Si substrate by confine-spaced chemical vapor deposition method. The whole process could be controlled efficiently by precursor concentration and fast thermal process. To be priority, the effect of fast heating-up to cooling-down process and source ratio-dependent rule for WSstructure have been systematically studied, leading to high-yield and fine structure of monolayer WSfilms with standard triangular morphology and average edge length of 92.
View Article and Find Full Text PDFAs an inflammatory skin disease of pilosebaceous follicles, Propionibacterium acnes (P. acnes) can aggravate local inflammatory responses and forms acne lesions. However, due to the skin barrier, various transdermal measures other than antibiotic creams are necessary.
View Article and Find Full Text PDFMacrodactyly is a congenital malformation characterized by enlargement of bone and soft tissues in limbs, typically with excessive accumulation of adipose tissues. Although gain-of-function mutation of PIK3CA has been identified in macrodactyly, the mechanism of PIK3CA mutation in adipose accumulation is poorly understood. In this study, we found that adipocytes from macrodactyly were more hypertrophic than those observed in polydactyly.
View Article and Find Full Text PDFMacrodactyly is a disabling congenital disease characterized by overgrowth of soft tissues and bones, which leads to finger enlargement and joint deformity. The mechanism of bone overgrowth in macrodactyly was rarely understood. In our study bone manifestations of three macrodactyly patients were analyzed by micro-CT.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Gram-negative bacteria, containing toxic proinflammatory and pyrogenic substances [endotoxin or lipopolysaccharide (LPS)], can lead to infection and associated serious diseases, such as sepsis and septic shock. Development of antimicrobial materials with intrinsically endotoxin adsorption activity can prevent the release of bacterial toxic components while killing bacteria. Herein, a series of imidazolium-type polyurethane (PU) foams with antimicrobial properties were synthesized.
View Article and Find Full Text PDFBackground: GLI3 encodes a transcription factor in the sonic hedgehog signaling pathway, which is essential in regulating the human limb bud development, especially on the anteroposterior axis. Mutations in GLI3 have been confirmed to be associated with various human congenital malformations, including Greig cephalopolysyndactyly syndrome, Pallister-Hall syndrome, and isolated polydactyly. A robust gene-phenotype relationship between GLI3 and Greig cephalopolysyndactyly syndrome and Pallister-Hall syndrome has been well elucidated, and less is known about GLI3 mutation-caused isolated polydactyly.
View Article and Find Full Text PDFGlyoxal (GO) is one of the major toxic intermediates generated during lipid oxidation and degradation. We investigated the inhibitory activities and mechanisms of propyl, octyl, and dodecyl gallates (PG, OG, and DG) on the formation of GO in buffer and during thermo-processing of corn oil, and the anti-carbonyl and antioxidative activities of the mono-GO adducts of PG, OG, and DG. Our results suggested that alkyl gallates could more effectively trap GO than gallic acid.
View Article and Find Full Text PDFIn the present study, we investigated the trapping of methylglyoxal (MGO) by propyl gallate (PG), a known food grade antioxidant, and the anti-carbonyl and anti-oxidative properties of the mono-MGO adduct of PG (MM-PG). Our result indicated that more than 77.5% MGO was suppressed by PG after a 30 min incubation of PG with MGO, which was much more effective than gallic acid (15.
View Article and Find Full Text PDF