HER2 mutations were seen in 4% of non-small-cell lung cancer (NSCLC) patients. Most of these mutations (90%) occur as an insertion mutation within the exon 20 frame, leading to the downstream activation of the PI3K-AKT and RAS/MAPK pathways. However, no targeted therapies have yet been approved worldwide.
View Article and Find Full Text PDFBackground: Several clinical conditions are associated with white matter injury, including periventricular white matter injury (PWMI), which is a form of brain injury sustained by preterm infants. It has been suggested that white matter injury in this condition is due to altered oligodendrocyte (OL) development or death, resulting in OL loss and hypomyelination. At present drugs are not available that stimulate OL proliferation and promote myelination.
View Article and Find Full Text PDFDamage to central nervous system white matter is observed following hypoglycemia, raising the possibility that hypoglycemia influences oligodendrocytes and myelination. To examine effects of hypoglycemia on oligodendrocytes and myelin formation, we studied cultured oligodendrocyte precursor cells and cerebellar slice cultures. We observed that with decreasing concentrations of glucose, oligodendrocyte precursor cell proliferation, maturation, and migration decreased.
View Article and Find Full Text PDFRecent evidence suggests that cytoskeletal proteins play important roles in the clustering and anchoring of glutamate receptors to the cell surface membrane. To examine further this issue, we tested for direct interactions between the metabotropic glutamate receptor subtype 1alpha (mGlu1alpha) and 4.1G, which is a member of the erythrocyte membrane, cytoskeletal protein 4.
View Article and Find Full Text PDFA1 adenosine receptors (A1ARs) exert important effects in the central nervous system. However, the expression and function of A1ARs in oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLGs) is unclear. To address this issue, we examined A1AR expression during different stages of oligodendrocyte development.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2003
Periventricular leukomalacia is characterized by a reduction in brain matter and secondary ventriculomegaly and is a major cause of developmental delay and cerebral palsy in prematurely born infants. Currently, our understanding of the pathogenesis of this condition is limited. In animal models, features of periventricular leukomalacia can be induced by hypoxia and activation of A1 adenosine receptors (A1ARs).
View Article and Find Full Text PDFTo identify binding partners of the A1AR (A1 adenosine receptor), yeast two-hybrid screening of a rat embryonic cDNA library was performed. This procedure led to the identification of erythrocyte membrane cytoskeletal protein (represented as 4.1G) as an A1AR-binding partner.
View Article and Find Full Text PDFOlfactory ensheathing cells (OECs) are a unique type of macroglia with axonal growth-promoting properties. However, our understanding of the factors that regulate OECs is at early stages. Lysophosphatidic acid (LPA) is a lipid that influences diverse functions in the nervous system.
View Article and Find Full Text PDFHepatocyte growth factor (HGF) was initially identified as a potent mitogen for mature hepatocytes and has since been found to affect a variety of cells. Evidence suggests that HGF may also influence the nervous system, in that HGF stimulates the proliferation of myelin-forming Schwann cells and olfactory ensheathing cells. However, it is not known whether HGF influences oligodendrocytes.
View Article and Find Full Text PDFA1 adenosine receptors (A1ARs) are widely expressed in the brain during development. To examine whether A1AR activation can alter postnatal brain formation, neonatal rats from postnatal days 3 to 14 were treated with the A1AR agonist N6-cyclopentyladenosine (CPA) in the presence or absence of the peripheral A1AR antagonist 8-(p-sulfophenyl)-theophylline (8SPT). CPA or CPA + 8SPT treatment resulted in reductions in white matter volume, ventriculomegaly, and neuronal loss.
View Article and Find Full Text PDF