The research on the umami receptor-ligand interaction is crucial for understanding umami perception. This study integrated molecular simulations, sensory evaluation, and biosensor technology to analyze the interaction between umami peptides and the umami receptor T1R1/T1R3-VFT. Molecular dynamics simulations were used to investigate the dissociation process of seven umami peptides with the umami receptor T1R1/T1R3-VFT, and by calculating the potential mean force curve using the Jarzynski equation, it was found that the binding free energy of umami peptide is between -58.
View Article and Find Full Text PDFAspartic acid (D) and glutamic acid (E) play vital roles in the umami peptides. To understand their exact mechanism of action, umami peptides were collected and cut into 1/2/3/4 fragments. Connecting D/E to the N/C-termini of the fragments formed D/E consensus effect groups (DEEGs), and all fragments containing DEEG were summarized according to the ratio and ranking obtained in the above four situations.
View Article and Find Full Text PDFTaste peptides, as an important component of protein-rich foodstuffs, potentiate the nutrition and taste of food. Thereinto, umami- and bitter-taste peptides have been ex tensively reported, while their taste mechanisms remain unclear. Meanwhile, the identification of taste peptides is still a time-consuming and costly task.
View Article and Find Full Text PDFTaste peptides with umami/bitterness play a role in food attributes. However, the taste mechanisms of peptides are not fully understood, and the identification of these peptides is time-consuming. Here, we created a taste peptide database by collecting the reported taste peptide information.
View Article and Find Full Text PDFPufferfish is nutritious and delicious, but the tetrodotoxin (TTX) that may exist in its body poses a serious safety hazard. It is important to use scientific and effective methods to detect the TTX in pufferfish, but most of the existing methods require complex pre-treatment steps and have sample lethality. The solid-phase microextraction (SPME) technology can be used for in vivo detection due to its advantages such as no solvent demand, simple operation, and fast detection speed.
View Article and Find Full Text PDF