High-throughput sequencing has exponentially increased peptide sequences, necessitating a computational method to identify multi-functional therapeutic peptides (MFTP) from their sequences. However, existing computational methods are challenged by class imbalance, particularly in learning effective sequence representations. To address this, we propose PSCFA, a prototypical supervised contrastive learning with a feature augmentation method for MFTP prediction.
View Article and Find Full Text PDFStrongly alkaline dispersive soils pose a significant global challenge to both engineering applications and agricultural production, particularly in arid and semi-arid regions. Conventional soil modifiers used to address this issue not only present environmental and economic concerns but also fail to effectively improve soil alkalinity. This study investigates the potential application of acidic desulfurization gypsum (DG) as a soil modifier for dispersive soils, aiming to achieve high-value utilization of industrial solid waste.
View Article and Find Full Text PDFSteel slag (SS) is a byproduct that comes from the production of crude steel in alkaline oxidation furnaces. Resource utilization of steel slag, a calcium-silicon solid waste, is an urgent problem. This paper investigates a solid waste disposal method that applies different steel slag contents to modify dispersive soil.
View Article and Find Full Text PDFIn salt lake areas, cast-in situ concrete structures are subjected to long-term corrosion by sulfate and magnesium ions. The properties of concrete can be improved by adding materials like basalt fiber (BF). To investigate the degradation process and mechanism of cast-in situ concrete with premixed BF under the dual corrosion of sulfate and magnesium salts, concrete with a content of BF ranging from 0 to 0.
View Article and Find Full Text PDFLoess exhibits poor engineering properties, such as low strength and poor water stability. Conventional materials used for improving loess, such as cement and lime, result in environmental pollution issues throughout their production and application processes. To assess the efficacy of bio-based materials, including calcium alginate (CA), xanthan gum (XA), cotton fibers (CO) and flax fibers (FA) in the treatment of loess, the improved soil's strength, disintegration, and water resistance were examined.
View Article and Find Full Text PDFMotivation: With the great number of peptide sequences produced in the postgenomic era, it is highly desirable to identify the various functions of therapeutic peptides quickly. Furthermore, it is a great challenge to predict accurate multi-functional therapeutic peptides (MFTP) via sequence-based computational tools.
Results: Here, we propose a novel multi-label-based method, named ETFC, to predict 21 categories of therapeutic peptides.
The stress-strain constitutive model under uniaxial compression is a basic element and important characterization method for determining physical and mechanical properties in cement-based materials research. In this study, a stress-strain constitutive model under uniaxial compression was established, which was based on a new nano-stabilized soil (NSS) through typical mechanical tests and constitutive relationship research. The results indicate that the unconfined compressive strength (UCS) of the nano-stabilized soil was enhanced with the increase in curing period and nano-stabilizer dosage, and that the strength growth rate reaches the maximum at a 12% dosage in the tested samples.
View Article and Find Full Text PDFSulfate induced degradation of concrete brings great damage to concrete structures in saline or offshore areas. The degradation mechanism of cast-in-situ concrete still remains unclear. This paper investigates the degradation process and corresponding mechanism of cast-in-situ concrete when immersed in sulfate-rich corrosive environments.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2020
A new nano-soil stabilizer (N-MBER, Nanometer Material Becoming Earth into Rock) material was developed in this research by using the high activity and ultrafine properties of nano-SiO (NS), which were able to improve the properties of cement-based soil stabilizer and had broad application prospects. The results showed that (1) the strength of N-MBER obeyed a compound function relation with curing period and additive amount of NS. The relationship between strength and curing period obeyed an exponential function when the additive amount was constant.
View Article and Find Full Text PDF