In this study, tunicate cellulose nanocrystals (TCNCs) were introduced into castor oil-based waterborne polyurethane (WPU) to prepare bio-based nanocomposites through a simple solution blending method. The effect of TCNCs content on the particle size and stability of the composite dispersions, as well as the thermophysical and mechanical properties of the composite films were studied and discussed. The unique structure and properties of TCNCs, such as high crystallinity, large aspect ratio and high modulus, not only greatly improved the storage stability of WPU, but also showed significant reinforcing/toughening effects and excellent compatibility to WPU.
View Article and Find Full Text PDFPlant oils are becoming of high industrial importance due to the persisting challenges befalling with the utilization of fossil fuels. Thus, developing methodologies to produce multifunctional materials by taking advantage of the unique structure of plant oil is highly desired. In this study, castor oil served as a cross-linker and soft segments, by incorporating scalable rhodamine 6G derivatives, to systematically synthesize a series of smart polymers that possess self-toughening and multistimuli-responsive capabilities.
View Article and Find Full Text PDFA series of vegetable oil-based waterborne polyurethane composites were prepared through construction of novel semi-interpenetrating polymers network using carboxymethyl chitosan (CA) as the secondary polymer phase. The effects of CA contents on storage stability, and particle size distribution of the composite dispersions and thermal stability, mechanical properties and surface wettability of composite films were investigated and discussed. The results showed that the composite dispersions displayed excellent storage stability and the biomass contents of resulting films were high up to 80 %.
View Article and Find Full Text PDF