Hydrogen peroxide (HO) was used to modify a natural polymer, sesbania gum (SG), to prepare oxidized sesbania gum (OSG) with the aim of investigating the physicochemical properties, antimicrobial activity of polyethylene oxide (PEO), OSG, and ε-poly(lysine) (ε-PL) composite fibre membranes and their applications in fresh-cut mango preservation. The PEO/OSG/ε-PL composite fibre membranes were successfully prepared via solution blow spinning (SBS) technology. The results of a series of characterizations revealed that ε-PL was successfully loaded into the fibrous membranes, exhibited good biocompatibility, and ε-PL was better encapsulated, with the membranes.
View Article and Find Full Text PDFThe primary challenges in fruit and vegetable preservation include extending storage duration while preserving sensory quality and nutritional value. In this study, sesbania gum (SG) was oxidized to prepare oxidized sesbania gum (OSG). An OSG/ZnO composite film was subsequently prepared, combining OSG, sodium carboxymethyl cellulose (CMC), and nano-zinc oxide (nano-ZnO).
View Article and Find Full Text PDFIntercropping green manure (GM) may be a good solution to the problems of acid soil in tropical plantations. Soil organic nitrogen (No) may change due to the application of GM. A three-year field experiment was conducted to determine the effect of different utilization patterns of Stylosanthes guianensis GM on soil No fractions in a coconut plantation.
View Article and Find Full Text PDFGrazing is the main way of utilizing understory vegetation in the tropics. However, the effects of grazing on vegetation diversity and soil functions in coconut plantations remain unclear. Therefore, this study was conducted in a young coconut plantation that was grazed by geese in Wenchang, China.
View Article and Find Full Text PDFObjective: To develop the chromatographic fingerprint of Lonicera japonica (L. japonica) and evaluate the effects of polyploidy on the quality of L. japonica.
View Article and Find Full Text PDFSalinity is a serious limiting factor for the growth of rhizobia. Some rhizobia are tolerant to salt stress and promote plant growth, but the mechanisms underlying these effects are poorly characterized. The growth responses and osmoprotectants in four strains were examined under salt stress in this study.
View Article and Find Full Text PDF