Globally, hepatocellular carcinoma (HCC) is one of the most common causes of cancer-associated mortalities. The clinical outcome of HCC patients remains poor due to distant metastasis and recurrence. In recent years, growing evidences have confirmed that the coiled-coil domain-containing (CCDC) family proteins are involved in the progression of several diseases.
View Article and Find Full Text PDFWith the increasing use of neoadjuvant therapy (NAT) in patients with pancreatic cancer to reduce tumor burden on prognosis, preoperative biliary drainage (PBD) is becoming increasingly necessary. The aim of this study was to summarize the latest evidence and compare the clinical efficacy of metal stents (MS) and plastic stents (PS) in patients undergoing neoadjuvant therapy for operable pancreatic cancer. Eligible studies were searched in PubMed, Embase and Cochrane Library from their inception to September 2021.
View Article and Find Full Text PDFSolute carrier family 25 member 20 (SLC25A51) is a newly identified mammalian mitochondrial NAD transporter. However, the clinicopathological and biological significance of SLC25A51 in human cancers, including hepatocellular carcinoma (HCC), remains unclear. The aim of this study was to define the role of SLC25A51 in HCC progression.
View Article and Find Full Text PDFBackground: Accumulating evidence has shown that tumor-associated macrophages (TAMs) play a critical role in tumor progression. Targeting TAMs is a potential strategy for tumor immunotherapy. However, the mechanism underlying the TAM phenotype and function needs to be resolved.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a class of single-stranded closed RNA molecules that undergo a specific backsplicing from pre-mRNA. With the application of high-throughput sequencing and bioinformatics, circRNAs are found to be widely expressed across species. Some functionally characterized circRNAs have critical roles in gene regulation through various actions, including sponging microRNAs and proteins as well as regulating transcription and splicing.
View Article and Find Full Text PDFCell Physiol Biochem
February 2017
Background/aims: Circular RNAs (circRNAs) are a special novel type of a stable, diverse and conserved noncoding RNA in mammalian cells. Particularly in cancer, circRNAs have been reported to be widely involved in the physiological/pathological process of life. However, it is unclear whether circRNAs are specifically involved in pancreatic ductal adenocarcinoma (PDAC).
View Article and Find Full Text PDFIschemia-reperfusion (I/R) is a major reason of hepatocyte injury during liver surgery and transplantation. Myeloid cells including macrophages and neutrophils play important roles in sustained tissue inflammation and damage, but the mechanisms regulating myeloid cells activity have been elusive. In this study, we investigate the role of Notch signaling in myeloid cells during hepatic I/R injury by using a mouse model of myeloid specific conditional knockout of RBP-J.
View Article and Find Full Text PDFUnlabelled: Macrophages play multidimensional roles in hepatic fibrosis, but their control has not been fully understood. The Notch pathway mediated by recombination signal binding protein Jκ (RBP-J), the transcription factor transactivated by signals from four mammalian Notch receptors, is implicated in macrophage activation and plasticity. In this study, by using mouse hepatic fibrosis models, we show that myeloid-specific disruption of RBP-J resulted in attenuated fibrosis.
View Article and Find Full Text PDFBackground: Aberrantly activated Notch signaling has been found in more than 50% of patients with T-cell acute lymphoblastic leukemia (T-ALL). Current strategies that employ γ-secretase inhibitors (GSIs) to target Notch activation have not been successful. Many limitations, such as non-Notch specificity, dose-limiting gastrointestinal toxicity and GSI resistance, have prompted an urgent need for more effective Notch signaling inhibitors for T-ALL treatment.
View Article and Find Full Text PDFBackground: We have previously reported that Notch signaling pathway protects hepatocytes from ischemia/ reperfusion (I/R) injury by repressing reactive oxygen species (ROS) production. However, apart from hepatocytes, non-parenchymal cells including vascular endothelia cells, Kupffer cells and hepatic stellate cells are also reported to be involved in hepatic I/R injury.
Aim: To clarify the role of Notch signaling in non-parenchymal cells subjected to I/R injury.
Unlabelled: Hepatic ischemia/reperfusion (I/R) injury is initiated by reactive oxygen species (ROS) accumulated during the early reperfusion phase after ischemia, but cellular mechanisms controlling ROS production and scavenging have not been fully understood. In this study, we show that blocking Notch signal by knockout of the transcription factor RBP-J or a pharmacological inhibitor led to aggravated hepatic I/R injury, as manifested by deteriorated liver function and increased apoptosis, necrosis, and inflammation, both in vitro and in vivo. Interruption of Notch signaling resulted in increased intracellular ROS in hepatocytes, and a ROS scavenger cured exacerbated hepatic I/R injury after Notch signaling blockade, suggesting that Notch signal deficiency aggravated I/R injury through increased ROS levels.
View Article and Find Full Text PDF