Publications by authors named "Hengbo Shi"

Soybean isoflavone (SIF) in soybeans are natural phytoestrogens, which is functioned as an estrogen agonistic or antagonistic. SIF regulates the capacity of animals to synthesize triacylglycerols by directly utilizing long-chain fatty acids. However, few studies have focused on its regulatory lipid metabolism in lactating dairy goats.

View Article and Find Full Text PDF

Background: Although several cell culture systems have been developed to investigate the function of the mammary gland in dairy livestock, they have potential limitations, such as the loss of alveolar structure or genetic and phenotypic differences from their native counterparts. Overcoming these challenges is crucial for lactation research. Development of protocols to establish lactating organoid of livestock represents a promising goal for the future.

View Article and Find Full Text PDF

The balance of the microbiome, which is sensitive to temperature changes, plays a crucial role in maintaining overall health and reducing the risk of diseases. However, the specific mechanisms by which immunity and microbiota interact to adapt to cold stress have yet to be addressed. In this study, Nanjiang Yellow goats were chosen as a model and sampled during the cold (winter, cold stress) and warm (spring) seasons, respectively.

View Article and Find Full Text PDF

Intramuscular fat (IMF) deposition is one of the most important factors affecting meat quality and is closely associated with the expression of carnitine palmitoyl transferase 1A () which facilitates the transfer of long-chain fatty acids (LCFAs) into the mitochondria. However, the role of how regulates the IMF formation remains unclear. Herein, we established the temporal expression profile of during the differentiation of goat intramuscular precursor adipocytes.

View Article and Find Full Text PDF

Malonyl-CoA decarboxylase () is a major regulator of fatty acid oxidation catalyzing the decarboxylation of malonyl coenzyme A (malonyl-CoA). Although its involvement in human diseases has been well studied, its role in intramuscular fat (IMF) deposition remains unknown. In this present study, 1726 bp of cDNA was cloned (OM937122) from goat liver, including 5'UTR of 27 bp, 3'UTR of 199 bp, and CDS of 1500 bp, encoding 499 amino acids.

View Article and Find Full Text PDF

Background: In rodents, research has revealed a role of liver X receptors (LXR) in controlling lipid homeostasis and regulating the synthesis of polyunsaturated fatty acids (PUFA). Recent data suggest that LXRB is the predominant LXR subtype in ruminant mammary cells, but its role in lipid metabolism is unknown. It was hypothesized that LXRB plays a role in lipid homeostasis via altering the synthesis of PUFA in the ruminant mammary gland.

View Article and Find Full Text PDF

Low immunity at birth increases risk of disease of young livestock, such as goat kids. Microbiomes change as animals mature, and a healthy microbiome is related to decreased risk of disease. The relationship between microbiota profiles and immunity at different developmental stages remains unclear.

View Article and Find Full Text PDF

Regenerative involution is important for the subsequent lactation, but molecular mechanism has not been revealed. The crucial miRNA in tissue development indicates that miRNAs might participate in regenerative involution. In the present study, the mammary tissues of the dairy goats (n = 3) were collected via biopsy at wk-8 (time to dry off), -6, -4, -1, and + 1 relative to lambing for the Hematoxylin and Eosin staining and miRNA sequencing.

View Article and Find Full Text PDF

To investigate the role of glucose in regulating milk fatty acid synthesis, 6 lactating Guanzhong dairy goats were infused with 0, 60, or 100 g/d glucose via the external pubic artery in a 3 × 3 repeated Latin square experiment. A concomitant in vitro experiment was conducted to investigate possible mechanisms whereby glucose regulates milk fatty acid synthesis. RNA sequencing was used for cellular transcriptome analysis.

View Article and Find Full Text PDF

Diacylglycerol acyltransferase 2 (DGAT2) is the key enzyme that catalyzes the last step of triglyceride synthesis. However, its role in intramuscular fat (IMF) deposition in goat remains unclear. The purpose of this study was to explore the role of DGAT2 in regulating goat IMF deposition.

View Article and Find Full Text PDF

Fatty acid binding protein 3 (FABP3) is involved in signal transduction pathways, and in the uptake and utilization of long-chain fatty acids. However, the transcriptional regulation of in goat is unclear. In this study, the 5' flanking region was amplified from goat () genomic DNA.

View Article and Find Full Text PDF

Subclinical mastitis is one of the major problems affecting dairy animals' productivity and is classified based on milk somatic cell counts (SCC). Previous data showed that marine-derived - (GB-9) improved the immunity and the nonspecific immune defense system of the body. In this study, the potential role of GB-9 in improving subclinical mastitis was assessed with (RT) as a positive control in subclinical mastitis Saanen dairy goats.

View Article and Find Full Text PDF

(GBacillus-9), derived from the intestinal tract of the white-spotted bamboo shark, secretes a variety of antimicrobial compounds that inhibit the growth of pathogenic bacteria. In this study, the role of GBacillus-9 in the prevention and treatment of Saanen kids with diarrhea was assessed. Six healthy kids (HL) and six kids with diarrhea (DL) were selected.

View Article and Find Full Text PDF

Milk fatty acids secreted by the mammary gland are one of the most important determinants of the nutritional value of goat milk. Unlike cow milk, limited data are available on the transcriptome-wide changes across stages of lactation in dairy goats. In this study, goat mammary gland tissue collected at peak lactation, cessation of milking, and involution were analyzed with digital gene expression (DGE) sequencing to generate longitudinal transcript profiles.

View Article and Find Full Text PDF

(GBacillus-9), which is isolated from the intestinal tract of the white-spotted bamboo shark (), can secrete potential antibacterial materials, such as β-1,3-1,4-glucanase and some antimicrobial peptides. However, the low fermentation production has hindered the development of GBacillus-9 as biological additives. In this study, the Plackett-Burman design and response surface methodology were used to optimize the fermentation conditions in a shake flask to obtain a higher yield and antibacterial activity of GBacillus-9.

View Article and Find Full Text PDF

A key member of the nuclear receptor superfamily is the peroxisome proliferator-activated receptor alpha (PPARA) isoform, which in nonruminants is closely associated with fatty acid oxidation. Whether PPARA plays a role in milk fatty acid synthesis in ruminants is unknown. The main objective of the present study was to use primary goat mammary epithelial cells (GMEC) to activate PPARA via the agonist WY-14643 (WY) or to silence it via transfection of small-interfering RNA (siRNA).

View Article and Find Full Text PDF

In humans, fatty acid elongase 7 (ELOVL7) plays a role in synthesis of long-chain saturated fatty acids. Whether ELOVL7 protein plays a role in ruminants is unclear. The transcript abundance of ELOVL7 in goat mammary tissue was assessed at three stages of lactation.

View Article and Find Full Text PDF

Background: GTPase-activating proteins (GAPs) with a TBC (Tre-2/Bub2/Cdc16) domain architecture serve as negative regulators of Rab GTPases. The related crystal structure has been studied and reported by other members of our research group in 2017 (Chen et al. in Protein Sci 26(4):834-846, 2017).

View Article and Find Full Text PDF

To explore the large-scale effect of peroxisome proliferator-activated receptor () in goat mammary epithelial cells (GMEC), an oligonucleotide microarray platform was used for transcriptome profiling in cells overexpressing and incubated with or without rosiglitazone (ROSI, a PPAR agonist). A total of 1143 differentially expressed genes (DEG) due to treatment were detected. The Dynamic Impact Approach (DIA) analysis uncovered the most impacted and induced pathways "fatty acid elongation in mitochondria," "glycosaminoglycan biosynthesis-keratan sulfate," and "pentose phosphate pathway.

View Article and Find Full Text PDF

Stearoyl-CoA desaturase 1 (SCD1) is a key enzyme for the synthesis of the monounsaturated fatty acids (MUFA) palmitoleic acid and oleic acid. In non-ruminant species, SCD1 expression is known to be tightly regulated by a variety of transcription factors. Although the role of SCD1 and the transcriptional regulatory mechanism by SREBP-1 and PPARs in other species is clear, changes in lipid metabolism related to SCD1 and via the regulation of SREBP-1 or PPARG1 in ruminant mammary tissue remain largely unknown.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs) are the major energy sources for ruminants and are known to regulate various physiological functions in other species. However, their roles in ruminant milk fat metabolism are still unclear. In this study, goat mammary gland epithelial cells (GMECs) were treated with 3 mmol/L acetate, propionate or butyrate for 24 h to assess their effects on lipogenesis.

View Article and Find Full Text PDF

Fatty acid synthase (FASN) is a central enzyme of milk fat synthesis in the ruminant mammary gland. However, the mechanisms regulating goat FASN transcription remain elusive. The objective of this study was to investigate the mechanisms by which liver X receptor α (LXRα) regulates the FASN promoter in goat mammary epithelial cells (GMECs).

View Article and Find Full Text PDF

Fatty acid synthase (FASN) is the central enzyme of the de novo fatty acid biosynthesis pathway. Although the FASN transcriptional regulatory mechanism has been elucidated clearly in many tumor cells, its mechanism is still not clear in the ruminant mammary gland. In this study, we cloned and sequenced a 1.

View Article and Find Full Text PDF

Dairy goats serve as an important source of milk and also fulfill agricultural and economic roles in developing countries. Understanding the genetic background of goat mammary gland is important for research on the regulatory mechanisms controlling tissue function and the synthesis of milk components. We collected tissue at four different stages of goat mammary gland development and generated approximately 25 GB of data from Illumina de novo RNA sequencing.

View Article and Find Full Text PDF

Adipose triglyceride lipase (ATGL) catalyzes the initial step in the lipid lipolysis process, hydrolyzing triglyceride (TG) to produce diacylglycerol (DG) and free fatty acids (FFA). In addition, ATGL regulates lipid storage and release in adipocyte cells. However, its role in mammary gland tissue remains unclear.

View Article and Find Full Text PDF