The inter-individual variability of CYP450s enzyme activity may be reduced by comparing the effects of bariatric surgery on CYP-mediated drug elimination in comparable patients before and after surgery. The current research will use a low-dose phenotyping cocktail to simultaneously evaluate the activities of six CYP isoforms and P-gp. The results showed that following weight reduction after surgery, the activity of all enzymes increased compared to the obese period, which was statistically significant in the case of CYP3A, CYP2B6, CYP2C9, and CYP1A2.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
June 2023
The present study evaluates the influence of type 2 diabetes (T2D) on important CYP450 (CYP) isoforms and P-glycoprotein (Pgp) transporter activities before and 3 months after an intensifying treatment regimen involving 40 patients. Results have been compared with 21 non-T2D healthy participants (the control group). CYPs and Pgp activities were assessed after administering the Geneva cocktail.
View Article and Find Full Text PDFGenetic polymorphisms in cytochrome P450 genes can cause variation in metabolism. Thus, single nucleotide variants significantly impact drug pharmacokinetics, toxicity factors, and efficacy and safety of medicines. The distribution of CYP450 alleles varies drastically across ethnicities, with significant implications for personalized medicine and the healthcare system.
View Article and Find Full Text PDFPersonalized therapy suggests the appropriate drug at the right dose for the first time through genotype-based individualized therapy, instead of prescribing medicines by the traditional one-size-fits-all manner, thereby claiming that it will make medicines safer and more effective. Accordingly, polymorphisms of drug metabolizing enzymes (DMEs), which induce inter-individual variability in the pharmacokinetics of a drug, have attracted great interest in the context of personalized medicine. Obesity is one of the most common chronic diseases in the world, including Iran, and the prevalence is increasing according to predictions.
View Article and Find Full Text PDFGenetic polymorphisms in cytochrome P450 genes can cause alteration in metabolic activity of clinically important medicines. Thus, single nucleotide variants (SNVs) and copy number variations (CNVs) in CYP genes are leading factors of drug pharmacokinetics and toxicity and form pharmacogenetics biomarkers for drug dosing, efficacy, and safety. The distribution of cytochrome P450 alleles differs significantly between populations with important implications for personalized drug therapy and healthcare programs.
View Article and Find Full Text PDF