Globally, hepatocellular carcinoma (HCC) is one of the most common causes of cancer-associated mortalities. The clinical outcome of HCC patients remains poor due to distant metastasis and recurrence. In recent years, growing evidences have confirmed that the coiled-coil domain-containing (CCDC) family proteins are involved in the progression of several diseases.
View Article and Find Full Text PDFBackground: Accumulating evidence has shown that tumor-associated macrophages (TAMs) play a critical role in tumor progression. Targeting TAMs is a potential strategy for tumor immunotherapy. However, the mechanism underlying the TAM phenotype and function needs to be resolved.
View Article and Find Full Text PDFIschemia-reperfusion (I/R) is a major reason of hepatocyte injury during liver surgery and transplantation. Myeloid cells including macrophages and neutrophils play important roles in sustained tissue inflammation and damage, but the mechanisms regulating myeloid cells activity have been elusive. In this study, we investigate the role of Notch signaling in myeloid cells during hepatic I/R injury by using a mouse model of myeloid specific conditional knockout of RBP-J.
View Article and Find Full Text PDFUnlabelled: Macrophages play multidimensional roles in hepatic fibrosis, but their control has not been fully understood. The Notch pathway mediated by recombination signal binding protein Jκ (RBP-J), the transcription factor transactivated by signals from four mammalian Notch receptors, is implicated in macrophage activation and plasticity. In this study, by using mouse hepatic fibrosis models, we show that myeloid-specific disruption of RBP-J resulted in attenuated fibrosis.
View Article and Find Full Text PDFBackground: Aberrantly activated Notch signaling has been found in more than 50% of patients with T-cell acute lymphoblastic leukemia (T-ALL). Current strategies that employ γ-secretase inhibitors (GSIs) to target Notch activation have not been successful. Many limitations, such as non-Notch specificity, dose-limiting gastrointestinal toxicity and GSI resistance, have prompted an urgent need for more effective Notch signaling inhibitors for T-ALL treatment.
View Article and Find Full Text PDFBackground: We have previously reported that Notch signaling pathway protects hepatocytes from ischemia/ reperfusion (I/R) injury by repressing reactive oxygen species (ROS) production. However, apart from hepatocytes, non-parenchymal cells including vascular endothelia cells, Kupffer cells and hepatic stellate cells are also reported to be involved in hepatic I/R injury.
Aim: To clarify the role of Notch signaling in non-parenchymal cells subjected to I/R injury.
Unlabelled: Hepatic ischemia/reperfusion (I/R) injury is initiated by reactive oxygen species (ROS) accumulated during the early reperfusion phase after ischemia, but cellular mechanisms controlling ROS production and scavenging have not been fully understood. In this study, we show that blocking Notch signal by knockout of the transcription factor RBP-J or a pharmacological inhibitor led to aggravated hepatic I/R injury, as manifested by deteriorated liver function and increased apoptosis, necrosis, and inflammation, both in vitro and in vivo. Interruption of Notch signaling resulted in increased intracellular ROS in hepatocytes, and a ROS scavenger cured exacerbated hepatic I/R injury after Notch signaling blockade, suggesting that Notch signal deficiency aggravated I/R injury through increased ROS levels.
View Article and Find Full Text PDF