Publications by authors named "Heng-Pei Ang"

Diabetic corneal neuropathy (DCN) is a common diabetic ocular complication with limited treatment options. In this study, we investigated the effects of topical and oral fenofibrate, a peroxisome proliferator-activated receptor-α agonist, on the amelioration of DCN using diabetic mice (n = 120). Ocular surface assessments, corneal nerve and cell imaging analysis, tear proteomics and its associated biological pathways, immuno-histochemistry and western blot on PPARα expression, were studied before and 12 weeks after treatment.

View Article and Find Full Text PDF

(1) Background: Cell injection therapy is an emerging treatment for bullous keratopathy (BK). Anterior segment optical coherence tomography (AS-OCT) imaging allows the high-resolution assessment of the anterior chamber. Our study aimed to investigate the predictive value of the visibility of cellular aggregates for corneal deturgescence in an animal model of bullous keratopathy.

View Article and Find Full Text PDF

Gene therapy constitutes one of the most promising mode of disease treatments. Two key properties for therapeutic delivery vectors are its transduction efficiency (how well the vector delivers therapeutic cargo to desired target cells) and specificity (how well it avoids off-target delivery into unintended cells within the body). Here we developed an integrated bioinformatics and experimental pipeline that enables multiplex measurement of transduction efficiency and specificity, particularly by measuring how libraries of delivery vectors transduce libraries of diverse cell types.

View Article and Find Full Text PDF

Femtosecond laser-assisted keratoplasty has been proposed as a treatment option for corneal transplantation. In this study, we investigated and compared the outcomes of Ziemer Z8 femtosecond laser (FSL)-assisted penetrating keratoplasty (PK) using a liquid interface versus flat interface. Thirty fresh porcine eyes underwent FSL-assisted PK with the Z8 using different levels of energies (30%, 90% or 150%) and different interfaces (liquid or flat).

View Article and Find Full Text PDF

Following corneal transplantation, there is an initial, rapid decline in corneal endothelial cells (CECs) following surgery. Direct imaging of post-transplantation endothelial cells is only possible weeks after surgery and with a limited field of view. We have developed a labelling approach using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DIR) dye solution, that enables tracking of labelled CECs in vivo for at least 1 month.

View Article and Find Full Text PDF

Donor corneas with low endothelial cell densities (ECD) are deemed unsuitable for corneal endothelial transplantation. This study evaluated a two-step incubation and dissociation harvesting approach to isolate single corneal endothelial cells (CECs) from donor corneas for corneal endothelial cell-injection (CE-CI) therapy. To isolate CECs directly from donor corneas, optimization studies were performed where donor Descemet's membrane/corneal endothelium (DM/CE) were peeled and incubated in either M4-F99 or M5-Endo media before enzymatic digestion.

View Article and Find Full Text PDF

As the cornea is one of the most transplanted tissues in the body it has placed a burden on the provision of corneas from cadaveric donors. Corneal endothelial dysfunction is the leading indication for cornea transplant. Therefore, tissue engineering is emerging as an alternative approach to overcome the global shortage of transplant-grade corneas.

View Article and Find Full Text PDF

Restoration of vision due to corneal blindness from corneal endothelial dysfunction can be achieved via a corneal transplantation. However, global shortage of donor tissues has driven the development cell-based therapeutics. With the capacity to propagate regulatory compliant human corneal endothelial cells (CEnCs), this study evaluated the functionality of propagated CEnCs delivered via tissue-engineered endothelial keratoplasty (TE-EK) or corneal endothelial cell injection (CE-CI) within a rabbit model of bullous keratopathy.

View Article and Find Full Text PDF

Purpose: To investigate the drug release profiles of a tacrolimus-loaded poly(D,L-lactide-co-ε-caprolactone) (PLC) microfilm, and to evaluate its efficacy on the treatment of allergic conjunctivitis using a mouse model.

Methods: The in vitro and in vivo drug release profiles were first characterized. Balb/c mice were immunized with short ragweed (SRW) injection followed by re-challenges with topical SRW solution.

View Article and Find Full Text PDF

Corneal inlays are a relatively new treatment option for presbyopia. Using biological inlays, derived from lenticules extracted from small incision lenticule extraction, may offer advantages over commercialized synthetic inlays in the aspect of biocompatibility. We conducted a non-human primate study to evaluate the safety, predictability, efficacy and tissue response after autogeneic, decellularized xenogeneic and xenogeneic lenticule implantation.

View Article and Find Full Text PDF

Corneal transplantation is the only treatment available to restore vision for individuals with blindness due to corneal endothelial dysfunction. However, severe shortage of available donor corneas remains a global challenge. Functional regulatory compliant tissue-engineered corneal endothelial graft substitute can alleviate this reliance on cadaveric corneal graft material.

View Article and Find Full Text PDF

Naturally-bioactive hydrogels like gelatin provide favorable properties for tissue-engineering but lack sufficient mechanical strength for use as implantable tissue engineering substrates. Complex fabrication or multi-component additives can improve material strength, but often compromises other properties. Studies have shown gelatin methacrylate (GelMA) as a bioactive hydrogel with diverse tissue growth applications.

View Article and Find Full Text PDF

Refractive surgical treatment of hyperopia still remains a challenge for refractive surgeons. A new nomogram of small incision lenticule extraction (SMILE) procedure has recently been developed for the treatment of hyperopia. In the present study, we aimed to evaluate the wound healing and inflammatory responses of this new nomogram (hyperopic-SMILE), and compared them to those of hyperopic-laser-assisted in situ keratomileusis (LASIK), using a rabbit model.

View Article and Find Full Text PDF

The introduction of femtosecond laser assisted cataract surgery (FLACS) is a paradigm changing approach in cataract surgery, the most commonly performed surgical procedure. FLACS has the potential to optimize the creation of an anterior lens capsulotomy, a critical step in accessing the cataractous lens. The merits of using a laser instead of a manual approach include a potentially more circular, consistent, and stronger aperture.

View Article and Find Full Text PDF

Cell surface antigens are important targets for monoclonal antibodies, but they are often difficult to work with due to their association with the cell membrane. Phage display is a versatile technique that can be applied to generate binders against difficult targets. Here we used antibody phage display to isolate a binder for a rare and specialized cell, the human corneal endothelial cell.

View Article and Find Full Text PDF

This study aimed at evaluating the effect of intraoperative corneal pocket irrigation in small incision lenticule extraction (SMILE) and compares it to that in femtosecond laser-assisted in situ keratomileusis (FS-LASIK). Sixteen rabbit eyes underwent a SMILE procedure, with 8 eyes having corneal pocket irrigation, while the other 8 eyes were without irrigation. Another 16 eyes underwent a FS-LASIK procedure for comparison, with 8 eyes having flap irrigation, while the other 8 eyes were without irrigation.

View Article and Find Full Text PDF

The global shortage of donor corneas has garnered extensive interest in the development of graft alternatives suitable for endothelial keratoplasty using cultivated primary human corneal endothelial cells (CECs). We have recently described a dual media approach for the propagation of human CECs. In this work, we characterize the effects of a Rho-kinase inhibitor Y-27632 on the cultivation of CECs propagated using the dual media culture system.

View Article and Find Full Text PDF

Corneal endothelium-associated corneal blindness is the most common indication for corneal transplantation. Restorative corneal transplant surgery is the only option to reverse the blindness, but a global shortage of donor material remains an issue. There are immense clinical interests in the development of alternative treatment strategies to alleviate current reliance on donor materials.

View Article and Find Full Text PDF

Purpose: To establish an animal model of congenital hereditary endothelial dystrophy (CHED) using Slc4a11 knockout (KO) mice and evaluate the abnormalities in the cornea and kidney.

Methods: The Slc4a11 KO mouse model was generated by gene deletion. Corneal abnormalities were evaluated using slit-lamp photography, anterior segment optical coherence tomography (AS-OCT), immunohistochemistry, RT-PCR, corneal endothelial cell staining, and electron microscopy.

View Article and Find Full Text PDF

Considerable interest has been generated for the development of suitable corneal endothelial graft alternatives through cell-tissue engineering, which can potentially alleviate the shortage of corneal transplant material. The advent of less invasive suture-less key-hole surgery options such as Descemet's Stripping Endothelial Keratoplasty (DSEK) and Descemet's Membrane Endothelial Keratoplasty (DMEK), which involve transplantation of solely the endothelial layer instead of full thickness cornea, provide further impetus for the development of alternative endothelial grafts for clinical applications. A major challenge for this endeavor is the lack of specific markers for this cell type.

View Article and Find Full Text PDF

Purpose: There is a lack of definitive cell surface markers to differentiate cultured human corneal endothelial cells (HCECs) from stromal fibroblasts, which could contaminate HCEC cultures. The aim of our study is to discover cell surface antigens on HCECs that can be used to identify and purify HCECs from stromal fibroblasts.

Methods: RNA sequencing (RNA-seq) was used to find differentially overexpressed genes in HCECs and commercial antibodies against these overexpressed antigens were screened by immunofluorescence assay.

View Article and Find Full Text PDF

Background: Global shortage of donor corneas greatly restricts the numbers of corneal transplantations performed yearly. Limited ex vivo expansion of primary human corneal endothelial cells is possible, and a considerable clinical interest exists for development of tissue-engineered constructs using cultivated corneal endothelial cells. The objective of this study was to investigate the density-dependent growth of human corneal endothelial cells isolated from paired donor corneas and to elucidate an optimal seeding density for their extended expansion in vitro whilst maintaining their unique cellular morphology.

View Article and Find Full Text PDF