Publications by authors named "Heng-Jie Cheng"

Aims: Upregulation of Ca/calmodulin-dependent protein kinase II (CaMKII) contributes to the pathogenesis of cardiovascular disease, including hypertension. Transgenic rats expressing the human angiotensinogen gene [TGR (hAGT)L1623] are a new novel humanized model of hypertension that associates with declines in cardiac contractile function and β-adrenergic receptor (AR) reserve. The molecular mechanisms are unclear.

View Article and Find Full Text PDF

Calcium-calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes mellitus (DM), leading to the overproduction of collagen in the myocardium. We hypothesized that CaMKII plays a role in the development of diabetic nephropathy (DN). Streptozotocin (STZ) injection into FVB wild-type mice led to mild mesangial matrix expansion, reproducing an essential feature of early human DN.

View Article and Find Full Text PDF

Aims: G protein-coupled estrogen receptor 30 (GPR30) activation by its agonist, G1, exhibits beneficial actions in female with heart failure (HF). Recent evidence indicates its cardiovascular benefits may also include male as well. However, whether and how GPR30 activation may limit HF progression and have a salutary role in males is unknown.

View Article and Find Full Text PDF

Ca/calmodulin-dependent protein kinase II (CaMKII) is upregulated in congestive heart failure (CHF), contributing to electrical, structural, and functional remodeling. CaMKII inhibition is known to improve CHF, but its direct cardiac effects in CHF remain unclear. We hypothesized that CaMKII inhibition improves cardiomyocyte function, [Ca] regulation, and -adrenergic reserve, thus improving advanced CHF.

View Article and Find Full Text PDF

Background: Angiotensin-(1-12) [Ang-(1-12)] is a renin-independent precursor for direct angiotensin-II production by chymase. Substantial evidence suggests that heart failure (HF) may alter cardiac Ang-(1-12) expression and activity; this novel Ang-(1-12)/chymase axis may be the main source for angiotensin-II deleterious actions in HF. We hypothesized that HF alters cardiac response to Ang-(1-12).

View Article and Find Full Text PDF

Background: Angiotensin-(1-12) [Ang-(1-12)] is a chymase-dependent source for angiotensin II (Ang II) cardiac activity. The direct contractile effects of Ang-(1-12) in normal and heart failure (HF) remain to be demonstrated. We assessed the hypothesis that Ang-(1-12) may modulate [Ca] regulation and alter cardiomyocyte contractility in normal and HF rats.

View Article and Find Full Text PDF

Unlabelled: Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy.

View Article and Find Full Text PDF

Background: Angiotensin-(1-7) [Ang-(1-7)] exhibits cardiovascular effects opposite those of angiotensin II (Ang II), thus providing protection against heart disease. However, how Ang-(1-7) imparts cardioprotection is unclear, and its direct cardiac effects are controversial. Whether heart failure (HF) alters cardiac contractile responses to Ang-(1-7) remains undetermined.

View Article and Find Full Text PDF

In heart failure (HF), the impaired left ventricular (LV) arterial coupling and diastolic dysfunction present at rest are exacerbated during exercise. C-type natriuretic peptide (CNP) is elevated in HF; however, its functional effects are unclear. We tested the hypotheses that CNP with vasodilating, natriuretic, and positive inotropic and lusitropic actions may prevent this abnormal exercise response after HF.

View Article and Find Full Text PDF

Background: Altered nitric oxide synthase (NOS) has been implicated in the pathophysiology of heart failure (HF). Recent evidence links hypothyroidism to the pathology of HF. However, the precise mechanisms are incompletely understood.

View Article and Find Full Text PDF

Objective: Recent evidence has shown that, in heart failure (HF), clinically relevant concentrations of angiotensin-(1-7) [Ang-(1-7)] counteracts angiotensin II induced cardiac depression and produces positive inotropic effects in both left ventricle (LV) and myocytes. However, the underlying electrophysiological mechanism is unclear. We investigated the role and mechanism of Ang-(1-7) on LV myocyte L-type calcium current (ICa,L) responses in normal state and in HF.

View Article and Find Full Text PDF

In heart failure (HF), the impaired left ventricular (LV) arterial coupling and diastolic dysfunction present at rest are exacerbated during exercise. We have previously shown that in HF at rest stimulation of β3-adrenergic receptors by endogenous catecholamine depresses LV contraction and relaxation. β3-Adrenergic receptors are activated at higher concentrations of catecholamine.

View Article and Find Full Text PDF

Frequency potentiation of contractile function is a major mechanism of the increase in myocardial performance during exercise. In heart failure (HF), this positive force-frequency relation is impaired, and the abnormal left ventricular (LV)-arterial coupling is exacerbated by tachycardia. A myofilament Ca(2+) sensitizer, levosimendan, has been shown to improve exercise tolerance in HF.

View Article and Find Full Text PDF

Background: Recent studies link altered cardiac beta-adrenergic receptor (AR) signaling to the pathology of alcoholic cardiomyopathy (ACM). However, the alteration and functional effect of beta(3)-AR activation in ACM are unknown. We tested the hypothesis that chronic alcohol intake causes an up-regulation of cardiac beta(3)-AR, which exacerbates myocyte dysfunction and impairs calcium regulation, thereby directly contributing to the progression of ACM.

View Article and Find Full Text PDF

Infection by Bacillus anthracis in animals and humans results from accidental or intentional exposure, by oral, cutaneous or pulmonary routes, to spores, which are normally present in the soil. Treatment includes administration of antibiotics, vaccination or treatment with antibody to the toxin. A better understanding of the molecular basis of the processes involved in the pathogenesis of anthrax namely, spore germination in macrophages and biological effects of the secreted toxins on heart and blood vessels will lead to improved management of infected animals and patients.

View Article and Find Full Text PDF

Background: The restrictive filling pattern seen with severe heart failure (HF) may be due to diastolic dysfunction with elevated left ventricular (LV) diastolic pressure or may be merely a manifestation of an overfilled LV as a result of increased left atrial (LA) pressure. We investigated whether the LV restrictive filling pattern is due to elevated LA pressure alone.

Methods And Results: We studied conscious dogs instrumented to measure LA pressure, LV pressure, and 3 LV diameters.

View Article and Find Full Text PDF

Background: Activation of the renin-angiotensin system (RAS) may contribute to the development of alcoholic cardiomyopathy. We evaluated the effect of angiotensin II (Ang II) type 1 receptor (AT1) blockade on the development of alcoholic cardiomyopathy.

Methods And Results: We serially evaluated left ventricular (LV) and cardiomyocyte function and the RAS over 6 months in 3 groups of instrumented dogs.

View Article and Find Full Text PDF

beta3-adrenergic receptors (AR) have recently been identified in mammalian hearts and shown to be up-regulated in heart failure (HF). beta3-AR stimulation reduces inotropic response associated with an inhibition of L-type Ca2+ channels in normal hearts; however, the effects of beta3-AR activation on Ca2+ channel in HF remain unknown. We compared the effects of beta(3)-AR activation on L-type Ca2+ current (ICa,L) in isolated left ventricular myocytes obtained from normal and age-matched rats with isoproterenol (ISO)-induced HF (4 months after 340 mg/kg s.

View Article and Find Full Text PDF

The new myofilament Ca2+ sensitizer levosimendan (LSM) is a positive inotropic and vasodilatory agent. Its beneficial effects have been demonstrated at rest in congestive heart failure (CHF). However, its effect during exercise (Ex) in CHF is unknown.

View Article and Find Full Text PDF

The objective of the present study was to test the hypothesis that endogenous beta(3)-adrenoreceptor (AR) activation contributes to left ventricular (LV) and cardiomyocyte dysfunction in heart failure (CHF). Stimulation of the beta(3)-AR inhibits cardiac contraction. In the failing myocardium, beta(3)-ARs are upregulated, suggesting that stimulation of beta(3)-ARs may contribute to depressed cardiac performance in CHF.

View Article and Find Full Text PDF

Objectives: We sought to investigate the mechanism of reduced diastolic mitral annular velocity with diastolic dysfunction, despite elevated left atrial (LA) pressure.

Background: The peak rate of left ventricular (LV) early diastolic filling (E) and velocity of the mitral annulus due to long-axis lengthening (E(M)) are reduced in mild diastolic dysfunction. With more severe dysfunction, E increases in response to increased LA pressures.

View Article and Find Full Text PDF