Cartilage repair has been a significant challenge in orthopedics that has not yet been fully resolved. Due to the absence of blood vessels and the almost cell-free nature of mature cartilage tissue, the limited ability to repair cartilage has resulted in significant socioeconomic pressures. Polysaccharide materials have recently been widely used for cartilage tissue repair due to their excellent cell loading, biocompatibility, and chemical modifiability.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2024
The management and treatment of wounds are complex and pose a substantial financial burden to the patient. However, the complex environment of wounds leads to inadequate drug absorption to achieve the desired therapeutic effect. As a novel technological platform, microneedles are widely used in drug delivery because of their multiple drug loading, multistage drug release, and multiple designs of topology.
View Article and Find Full Text PDFHydrogel adhesion materials are widely reported for tissue engineering repair applications, however, wet tissue surface moisture can reduce the wet-adhesion properties and mechanical strength of hydrogels limiting their application. Here, anti-hydration gelatin-acrylic acid-ethylene dimethacrylate (GAE) hydrogels with hydrophobic cross-linked chains are constructed. The prepared GAE hydrogel is soaked in PBS (3 days) with a volume change of 0.
View Article and Find Full Text PDFThe incidence of peripheral nerve injury (PNI) is high worldwide, and a poor prognosis is common. Surgical closure and repair of the affected area are crucial to ensure the effective treatment of peripheral nerve injuries. Despite being the standard treatment approach, reliance on sutures to seal the severed nerve ends introduces several limitations and restrictions.
View Article and Find Full Text PDFPeripheral nerve injuries are common neurological disorders, and the available treatment options, such as conservative management and surgical repair, often yield limited results. However, there is growing interest in the potential of using chitosan-based biopolymers as a novel therapeutic approach to treating these injuries. Chitosan-based biopolymers possess unique characteristics, including biocompatibility, biodegradability, and the ability to stimulate cell proliferation, making them highly suitable for repairing nerve defects and promoting nerve regeneration and functional recovery.
View Article and Find Full Text PDFThe micron track conduit (MTC) and nerve factor provide a physical and biological model for simulating peripheral nerve growth and have potential applications for nerve injury. However, it has rarely been reported that they synergize on peripheral nerves. In this study, we used bioderived chitosan as a substrate to design and construct a neural repair conduit with micron track topography using threedimensional (3D) printing topography.
View Article and Find Full Text PDFTrauma often results in peripheral nerve injuries (PNIs). These injuries are particularly challenging therapeutically because of variable nerve diameters, slow axonal regeneration, infection of severed ends, fragility of the nerve tissue, and the intricacy of surgical intervention. Surgical suturing is likely to cause additional damage to peripheral nerves.
View Article and Find Full Text PDFActive packaging systems that are sustainable and capable of delivering antimicrobial agents intelligently are in demand in food industry. In this work, an extremely simple strategy inspired by leaf stomata was introduced to smartly trigger thymol release at different relative humidity using EVOH as the "stomata". Thymol was encapsulated into ethylene vinyl alcohol copolymer (EVOH) to form core-shell nanofibers (thymol/EVOH) via coaxial electrospinning.
View Article and Find Full Text PDFThere are many problems and challenges related to the treatment of highly prevalent oral mucosal diseases and oral drug delivery because of a large amount of saliva present in the oral cavity, the accompanying oral movements, and unconscious swallowing in the mouth. Therefore, an ideal oral dressing should possess stable adhesion and superior tough strength in the oral cavity. However, this fundamental requirement greatly limits the use of synthetic adhesive dressings for oral dressings.
View Article and Find Full Text PDFPolymers (Basel)
February 2022
Chitosan is a biodegradable natural polymer derived from the exoskeleton of crustaceans. Because of its biocompatibility and non-biotoxicity, chitosan is widely used in the fields of medicine and agriculture. With the latest technology and technological progress, different active functional groups can be connected by modification, surface modification, or other configurations with various physical, chemical, and biological properties.
View Article and Find Full Text PDFIn order to verify the performance of a graphene-based space radiation detection sensor, the radiation detection principle based on two-dimensional graphene material was analyzed according to the band structure and electric field effect of graphene. The method of space radiation detection based on graphene was studied and then a new type of space radiation sensor samples with small volume, high resolution, and radiation-resistance was formed. Using protons and electrons, the electrical performance of GFET radiation sensor was verified.
View Article and Find Full Text PDFThe intelligent wearable sensors promote the transformation of the health care from a traditional hospital-centered model to a personal portable device-centered model. There is an urgent need of real-time, multi-functional, and personalized monitoring of various biochemical target substances and signals based on the intelligent wearable sensors for health monitoring, especially wound healing. Under this background, this review article first reviews the outstanding progress in the development of intelligent, wearable sensors designed for continuous, real-time analysis, and monitoring of sweat, blood, interstitial fluid, tears, wound fluid, etc.
View Article and Find Full Text PDFPeripheral nerve injury often occurs in young adults and is characterized by complex regeneration mechanisms, poor prognosis, and slow recovery, which not only creates psychological obstacles for the patients but also causes a significant burden on society, making it a fundamental problem in clinical medicine. Various steps are needed to promote regeneration of the peripheral nerve. As a bioremediation material, self-assembled peptide (SAP) hydrogels have attracted international attention.
View Article and Find Full Text PDFWe report a new injectable and biodegradable self-healing hydrogel that shows enhanced anticancer drug release property. The hydrogel was prepared based on biodegradable pectin aldehyde (pectin-CHO) and acylhydrazide functionalized polymer poly(N-isopropylacrylamide-stat-acylhydrazide) P(NIPAM-stat-AH). Due to the dynamic nature of acylhydrazone bonds, the hydrogel exhibits self-healing behavior and its mechanical properties can be regulated by the weight ratio of P(NIPAM-stat-AH) to pectin-CHO.
View Article and Find Full Text PDFEnvironment-responsive hydrogel actuators have attracted tremendous attention due to their intriguing properties. Gamma radiation has been considered as a green cross-linking process for hydrogel synthesis, as toxic cross-linking agents and initiators were not required. In this work, chitosan/agar/P(N-isopropyl acrylamide-co-acrylamide) (CS/agar/P(NIPAM-co-AM)) and CS/agar/Montmorillonite (MMT)/PNIPAM temperature-sensitive hydrogel bilayers were synthesized via gamma radiation at room temperature.
View Article and Find Full Text PDFThe biological barrier of solid tumors hinders deep penetration of nanomedicine, constraining anticancer treatment. Moreover, the inherent multidrug resistance (MDR) of cancer tissues may further limit the efficacy of anti-tumor nanomedicine. We synthesized highly permeable, photothermal, injectable, and positively charged biodegradable nucleic acid hydrogel (DNA-gel) nanoparticles to deliver cancer drugs.
View Article and Find Full Text PDFSelf-healing hydrogels have attracted great attention in recent years because of their wide application in bioscience and biotechnology. In this study, P(DMAPMA-stat-DAA) were synthesized by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization and quaternized to import antimicrobial properties. Then quaternized P(DMAPMA-stat-DAA) was used to prepare hydrogel containing acylhydrazone groups with Polyethylene oxide (PEO) diacylhydrazide as a cross-linking agent.
View Article and Find Full Text PDFSelf-healing hydrogels based on degradable resources have developed rapidly in the past decade due to their extensive bioapplications with biosecurity. In this research, a new kind of cellulose-based self-healing hydrogel with bio-degradability is constructed through boronic ester linkage. The carboxyethyl cellulose--phenylboronic acid (CMC-B(OH)) was synthesized through condensation reaction conveniently and then hydrogels were prepared with dynamic boronic ester cross-linking.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2020
Self-healing hydrogels were prepared from hydrazide functionalized poly(aspartic acid) (PAsp). The polymer succinimide (PSI) was reacted with hydrazine and ethanolamine successively to obtain water soluble poly(aspartic acid) derivatives with hydrazide functional groups (PAEH). The hydrogel was prepared by cross-linking PAEH with poly(ethylene glycol) dialdehyde (PEG DA) under mild conditions without addition of catalyst.
View Article and Find Full Text PDFSelf-healing hydrogels have drawngreat attention in the past decade since the self-healing property is one of the characteristics of living creatures. In this study, poly(acrylamide-stat-diacetone acrylamide) P(AM--DAA) with a pendant ketone group was synthesized from easy accessible monomers, and thermo-responsive self-healing hydrogels were prepared through a series of diacylhydrazide compounds cross-linking without any additional stimulus. Although the copolymers do not show thermo-response, the hydrogels became thermo-responsive andboth the lower critical solution temperature (LCST) and upper critical solution temperature (UCST) varied with the composition of the copolymer and structure of cross-linkers.
View Article and Find Full Text PDFA fast neutron detection system based on a scintillating plastic fiber array and multiplexer was designed to measure the spectrum of fast neutrons ranged 10 MeV-100 MeV. With the method of nuclear recoil, the energy of incident neutron was determined by measuring the recoil proton track and deposited energy in scintillating plastic fibers. The detection system was composed of a scintillating plastic fiber array, 6 position sensitive photomultiplier tubes, and a high-density readout electronics based on the multiplexer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2016
The self-healable polymer hydrogel along with reversible temperature responsiveness was prepared through self-catalyzed dynamic acylhydrazone formation and exchange without any additional stimulus or catalyst. The hydrogel was prepared from a copolymer of N-isopropylacrylamide and acylhydrazine P(NIPAM-co-AH) cross-linked by PEO dialdehyde. Besides self-healed under catalysis of acid and aniline, the hydrogel can also self-heal activated by excess of acylhydrazine groups.
View Article and Find Full Text PDF