Publications by authors named "Hendrikx M"

Immune checkpoint inhibitors (ICI) are routinely used in advanced clear cell renal cell carcinoma (ccRCC). However, a substantial group of patients does not respond to ICI therapy. Radiation is a promising approach to increase ICI response rates since it can generate anti-tumor immunity.

View Article and Find Full Text PDF

MANIO is an efficient p53-activating anticancer agent with remarkable selectivity to the p53 pathway and promising antitumor activity against colorectal cancer (CRC). Herein, a library of novel MANIO derivatives, including hydroxymethyl- and bis(hydroxymethyl)-1,3-pyrrolo[1,2-]thiazoles, was synthesized by rational structural modulation. The antiproliferative activity of twenty derivatives was evaluated in a panel of human CRC cells with different p53 status.

View Article and Find Full Text PDF

Myocardial infarction (MI) occurs when the coronary blood supply is interrupted. As a consequence, cardiomyocytes are irreversibly damaged and lost. Unfortunately, current therapies for MI are unable to prevent progression towards heart failure.

View Article and Find Full Text PDF

Background: During myocardial infarction (MI), billions of cardiomyocytes are lost. The optimal therapy should effectively replace damaged cardiomyocytes, possibly with stem cells able to engraft and differentiate into adult functional cardiomyocytes. As such, cardiac atrial appendage stem cells (CASCs) are suitable candidates.

View Article and Find Full Text PDF

Myocardial infarction irreversibly destroys millions of cardiomyocytes in the ventricle, making it the leading cause of heart failure worldwide. Over the past two decades, many progenitor and stem cell types were proposed as the ideal candidate to regenerate the heart after injury. The potential of stem cell therapy has been investigated thoroughly in animal and human studies, aiming at cardiac repair by true tissue replacement, by immune modulation, or by the secretion of paracrine factors that stimulate endogenous repair processes.

View Article and Find Full Text PDF

Stem cell-based regenerative therapies hold great promises to treat a wide spectrum of diseases. However, stem cell engraftment and survival are still challenging due to an unfavorable transplantation environment. Advanced glycation end-products (AGEs) can contribute to the generation of these harmful conditions.

View Article and Find Full Text PDF

Human cardiac stem cells isolated from atrial appendages based on aldehyde dehydrogenase activity (CASCs) can be expanded in vitro and differentiate into mature cardiomyocytes. In this study, we assess whether Wnt activation stimulates human CASC proliferation, whereas Wnt inhibition induces cardiac maturation. CASCs were cultured as described before.

View Article and Find Full Text PDF

Stem cell-based therapy has been considered as a promising option in the treatment of ischemic heart disease. Although stem cell administration resulted in the temporary improvement of myocardial contractility in the majority of studies, the formation of new cardiomyocytes within the injured myocardium has not been conclusively demonstrated. Consequently, the focus of research in the field has since shifted to stem cell-derived paracrine factors, including cytokines, growth factors, mRNA, and miRNA.

View Article and Find Full Text PDF

Coronary artery bypass graft (CABG) surgery is known to induce significant muscle wasting. It remains to be investigated whether muscle wasting after CABG surgery relates to a worse clinical status at entry of rehabilitation and exercise-based rehabilitation remediates such muscle wasting. Prospective observational study.

View Article and Find Full Text PDF

Light responsive materials that are able to change their shape are becoming increasingly important. However, preconfigurable bistable or even multi-stable visible light responsive coatings have not been reported yet. Such materials will require less energy to actuate and will have a longer lifetime.

View Article and Find Full Text PDF

Wrinkling is a powerful technique for the preparation of surface structures over large areas, but it is difficult to simultaneously control the direction, period, and amplitude of the wrinkles without resorting to complicated procedures. In this work, we demonstrate a wrinkling system consisting of a liquid crystal polymer network and a thin layer of gold, in which the direction of the wrinkles is controlled by the alignment of the liquid crystal molecules and the average amplitude and period are controlled by a high-intensity UV irradiation. The UV exposure represses the amplitude and period dictated by the total exposure.

View Article and Find Full Text PDF

In analogy with developments in soft robotics it is anticipated that soft robotic functions at surfaces of objects may have a large impact on human life with respect to comfort, health, medical care and energy. In this review, we demonstrate the possibilities and versatilities of liquid crystal networks and elastomers being explored for soft robotics, with an emphasis on motile surface properties, such as topographical dynamics. Typically the surfaces reversibly transfer from a flat state to a pre-designed corrugated state under various stimuli.

View Article and Find Full Text PDF

Background: Obtaining hemostasis during cardiovascular procedures can be a challenge, particularly around areas with a complex geometry or that are difficult to access. While several topical hemostats are currently on the market, most have caveats that limit their use in certain clinical scenarios such as pulsatile arterial bleeding. The aim of this study was to assess the effectiveness and safety of Veriset™ hemostatic patch in treating cardiovascular bleeding.

View Article and Find Full Text PDF

The original version of this Article contained errors in Figs. 1a, 2a, 3a, and 4b, in which the units on the scale bars incorrectly read 'µm' rather than the correct 'nm.' This has been corrected in both the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

Stimuli-responsive liquid crystal elastomers with molecular orientation coupled to rubber-like elasticity show a great potential as elements in soft robotics, sensing, and transport systems. The orientational order defines their mechanical response to external stimuli, such as thermally activated muscle-like contraction. Here we demonstrate a dynamic thermal control of the surface topography of an elastomer prepared as a coating with a pattern of in-plane molecular orientation.

View Article and Find Full Text PDF

The light-induced surface topography of a liquid crystal polymer coating is brought into a patterned oscillatory deformation. A dichroic photo-responsive azobenzene is co-aligned with the planar oriented nematic liquid crystal network molecules which makes the surface deformation sensitive to polarized UV light. Locally selective actuation is achieved in coatings with a complex alignment pattern.

View Article and Find Full Text PDF

Introduction: Even though results have been encouraging, an unequivocal conclusion on the beneficial effect of minimally invasive extracorporeal circulation (MiECC) in patients undergoing aortic valve surgery cannot be derived from previous publications. Long-term outcomes are rarely reported and a significant decrease in operative mortality has not been shown. Most studies have a limited number of patients and are underpowered.

View Article and Find Full Text PDF

Extracellular microenvironment is highly dynamic where spatiotemporal regulation of cell-instructive cues such as matrix topography tightly regulates cellular behavior. Recapitulating dynamic changes in stimuli-responsive materials has become an important strategy in regenerative medicine to generate biomaterials which closely mimic the natural microenvironment. Here, light responsive liquid crystal polymer networks are used for their adaptive and programmable nature to form hybrid surfaces presenting micrometer scale topographical cues and changes in nanoscale roughness at the same time to direct cell migration.

View Article and Find Full Text PDF

Photoactivated reversible addition fragmentation chain transfer (RAFT)-based dynamic covalent chemistry is incorporated into liquid crystalline networks (LCNs) to facilitate spatiotemporal control of alignment, domain structure, and birefringence. The RAFT-based bond exchange process, which leads to stress relaxation, is used in a variety of conditions, to enable the LCN to achieve a near-equilibrium structure and orientation upon irradiation. Once formed, and in the absence of subsequent triggering of the RAFT process, the (dis)order in the LCN and its associated birefringence are evidenced at all temperatures.

View Article and Find Full Text PDF

Introduction: We investigated patients with contemporarily staged and treated stage III-N2 NSCLC treated with induction chemotherapy and surgery with or without postoperative radiotherapy (PORT). We focused on survival and toxicity and investigated what additional PORT may offer in patients with ypN2 status or incomplete resection.

Methods: We identified 161 patients with pathologically proven, resectable stage III-N2 NSCLC from our prospective database who were treated between 1998 and 2012.

View Article and Find Full Text PDF

Objectives: Our aim was to evaluate locoregional relapse (LR) patterns after induction chemotherapy and surgery for stage III-N2 NSCLC staged with current standard methods and their impact on radiation target volumes for postoperative radiotherapy (PORT).

Methods: A total of 150 patients with stage III-N2 NSCLC from a prospective database of patients who underwent surgical resection at the University Hospitals of Leuven or the Oncologic Centre Limburg between 1998 and 2012 were included. Patients were staged with fluorodeoxyglucose F 18 positron emission tomography/computed tomography and brain imaging and treated with induction chemotherapy and surgery.

View Article and Find Full Text PDF

Cardiac atrial appendage stem cells (CASCs) show extraordinary myocardial differentiation properties, making them ideal candidates for myocardial regeneration. However, since the myocardium is a highly vascularized tissue, revascularization of the ischemic infarct area is essential for functional repair. Therefore, this study assessed if CASCs contribute to cardiac angiogenesis via paracrine mechanisms.

View Article and Find Full Text PDF

Traditionally the heart is considered a terminally differentiated organ. However, at the beginning of this century increased mitotic activity was reported in ischemic and idiopathic dilated cardiomyopathy hearts, compared to healthy controls, underscoring the potential of regeneration after injury. Due to the presence of adult stem cells in bone marrow and their purported ability to differentiate into other cell lineages, this cell population was soon estimated to be the most suited candidate for cardiac regeneration.

View Article and Find Full Text PDF

Objective: The purpose of this work was to test the hypothesis that cardiopulmonary exercise tolerance is better preserved early after endoscopic atraumatic coronary artery bypass graft (endo-ACAB) surgery versus coronary artery bypass graft (CABG) surgery.

Design: Twenty endo-ACAB surgery patients, 20 CABG surgery patients, and 15 healthy subjects executed a maximal cardiopulmonary exercise test, with assessment and comparison of cycling power output, O2 uptake, CO2 output, respiratory gas exchange ratio, end-tidal O2 and CO2 pressures, equivalents for O2 uptake and CO2 output, heart rate, O2 pulse, expiratory volume, tidal volume, respiratory rate, at peak exercise and ventilatory threshold. In patients, forced expiratory volume and forced vital capacity were measured.

View Article and Find Full Text PDF