Publications by authors named "Hendrik van Aken"

Concentrations of polychlorinated biphenyls, polyaromatic hydrocarbons, hexachlorobenzene, and DDE were determined by passive sampling (semipermeable membrane devices) with exposure times of 1-1.5 years at 0.1-5 km depth in the Irminger Sea, the Canary Basin (both North Atlantic Ocean), and the Mozambique Channel (Indian Ocean).

View Article and Find Full Text PDF

Iron (Fe) is an essential trace element for marine life. Extremely low Fe concentrations limit primary production and nitrogen fixation in large parts of the oceans and consequently influence ocean ecosystem functioning. The importance of Fe for ocean ecosystems makes Fe one of the core chemical trace elements in the international GEOTRACES program.

View Article and Find Full Text PDF

The extent to which water mass mixing contributes to the biological activity of the dark ocean is essentially unknown. Using a multiparameter water mass analysis, we examined the impact of water mass mixing on the nutrient distribution and microbial activity of the Northeast Atlantic Deep Water (NEADW) along an 8000 km long transect extending from 62°N to 5°S. Mixing of four water types (WT) and basin scale mineralization from the site where the WT where defined to the study area explained up to 95% of the variability in the distribution of inorganic nutrients and apparent oxygen utilization.

View Article and Find Full Text PDF

Marine Crenarchaeota are among the most abundant groups of prokaryotes in the ocean and recent reports suggest that they oxidize ammonia as an energy source and inorganic carbon as carbon source, while other studies indicate that Crenarchaeota use organic carbon and hence, live heterotrophically. We used catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) to determine the crenarchaeal and bacterial contribution to total prokaryotic abundance in the (sub)tropical Atlantic. Bacteria contributed ~ 50% to total prokaryotes throughout the water column.

View Article and Find Full Text PDF

Macroscopic particles (>500 mum), including marine snow, large migrating zooplankton, and their fast-sinking fecal pellets, represent primary vehicles of organic carbon flux from the surface to the deep sea. In contrast, freely suspended microscopic particles such as bacteria and protists do not sink, and they contribute the largest portion of metabolism in the upper ocean. In bathy- and abyssopelagic layers of the ocean (2,000-6,000 m), however, microscopic particles may not dominate oxygen consumption.

View Article and Find Full Text PDF

Prokaryotic extracellular enzymatic activity, abundance, heterotrophic production and respiration were determined in the meso- and bathypelagic (sub)tropical North Atlantic. While prokaryotic heterotrophic production (PHP) decreased from the lower euphotic layer to the bathypelagic waters by two orders of magnitude, prokaryotic abundance and cell-specific PHP decreased only by one order of magnitude. In contrast to cell-specific PHP, cell-specific extracellular enzymatic activity (alpha- and beta-glucosidase, leucine aminopeptidase, alkaline phosphatase) increased with depth as did cell-specific respiration rates.

View Article and Find Full Text PDF

The contribution of Chloroflexi-type SAR202 cells to total picoplankton and bacterial abundance and uptake of D- and L-aspartic acids (Asp) was determined in the different meso- and bathypelagic water masses of the (sub)tropical Atlantic (from 35 degrees N to 5 degrees S). Fluorescence in situ hybridization (FISH) revealed that the overall abundance of SAR202 was < or = 1 x 10(3) cells ml(-1) in subsurface waters (100 m layer), increasing in the mesopelagic zone to 3 x 10(3) cells ml(-1) and remaining fairly constant down to 4000 m depth. Overall, the percentage of total picoplankton identified as SAR202 increased from < 1% in subsurface waters to 10-20% in the bathypelagic waters.

View Article and Find Full Text PDF

The distribution and activity of the bulk picoplankton community and, using microautoradiography combined with catalysed reported deposition fluorescence in situ hybridization (MICRO-CARD-FISH), of the major prokaryotic groups (Bacteria, marine Crenarchaeota Group I and marine Euryarchaeota Group II) were determined in the water masses of the subtropical North Atlantic. The bacterial contribution to total picoplankton abundance was fairly constant, comprising approximately 50% of DAPI-stainable cells. Marine Euryarchaeota Group II accounted always for < 5% of DAPI-stainable cells.

View Article and Find Full Text PDF

To elucidate the potential importance of deep-water viruses in controlling the meso- and bathypelagic picoplankton community, the abundance, decay rate, and diversity of the virioplankton community were determined in the meso- and bathypelagic water masses of the eastern part of the subtropical North Atlantic. Viral abundance averaged 1.4 x 10(6) ml(-1) at around 100 m of depth and decreased only by a factor of 2 at 3,000 to 4,000 m of depth.

View Article and Find Full Text PDF

Fluorescence in situ hybridization (FISH) in combination with polynucleotide probes revealed that the two major groups of planktonic Archaea (Crenarchaeota and Euryarchaeota) exhibit a different distribution pattern in the water column of the Pacific subtropical gyre and in the Antarctic Circumpolar Current system. While Euryarchaeota were found to be more dominant in nearsurface waters, Crenarchaeota were relatively more abundant in the mesopelagic and bathypelagic waters. We determined the abundance of archaea in the mesopelagic and bathypelagic North Atlantic along a south-north transect of more than 4,000 km.

View Article and Find Full Text PDF