Publications by authors named "Hendrik Treutler"

In plant ecology, biochemical analyses of bryophytes and vascular plants are often conducted on dried herbarium specimen as species typically grow in distant and inaccessible locations. Here, we present an automated in silico compound classification framework to annotate metabolites using an untargeted data independent acquisition (DIA)-LC/MS-QToF-sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH) ecometabolomics analytical method. We perform a comparative investigation of the chemical diversity at the global level and the composition of metabolite families in ten different species of bryophytes using fresh samples collected on-site and dried specimen stored in a herbarium for half a year.

View Article and Find Full Text PDF

The central aim in ecometabolomics and chemical ecology is to pinpoint chemical features that explain molecular functioning. The greatest challenge is the identification of compounds due to the lack of constitutive reference spectra, the large number of completely unknown compounds, and bioinformatic methods to analyze the big data. In this study we present an interdisciplinary methodological framework that extends ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) with data-dependent acquisition (DDA-MS) and the automated classification of fragment peaks into compound classes.

View Article and Find Full Text PDF
Article Synopsis
  • - Metabolomics focuses on analyzing the variety of metabolites within biological systems using advanced techniques like mass spectrometry and NMR, generating vast, complex data sets.
  • - Open source software is crucial for enhancing reproducibility in science, with R being a popular choice for processing metabolomics data due to its ability to integrate various tools into comprehensive workflows.
  • - This review details over 200 R packages that facilitate different steps in metabolomics research, including data processing, statistical analysis, and biochemical interpretation, while also discussing user interfaces and workflow management integration.
View Article and Find Full Text PDF

Background: different Solanaceae and Erythroxylaceae species produce tropane alkaloids. These alkaloids are the starting material in the production of different pharmaceuticals. The commercial demand for tropane alkaloids is covered by extracting them from cultivated plants.

View Article and Find Full Text PDF

The relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales.

View Article and Find Full Text PDF

Metabolomics is the modern term for the field of small molecule research in biology and biochemistry. Currently, metabolomics is undergoing a transition where the classic analytical chemistry is combined with modern cheminformatics and bioinformatics methods, paving the way for large-scale data analysis. We give some background on past developments, highlight current state-of-the-art approaches, and give a perspective on future requirements.

View Article and Find Full Text PDF

Background: Transcriptional gene regulation is a fundamental process in nature, and the experimental and computational investigation of DNA binding motifs and their binding sites is a prerequisite for elucidating this process. Approaches for de-novo motif discovery can be subdivided in phylogenetic footprinting that takes into account phylogenetic dependencies in aligned sequences of more than one species and non-phylogenetic approaches based on sequences from only one species that typically take into account intra-motif dependencies. It has been shown that modeling (i) phylogenetic dependencies as well as (ii) intra-motif dependencies separately improves de-novo motif discovery, but there is no approach capable of modeling both (i) and (ii) simultaneously.

View Article and Find Full Text PDF

Motivation: The computational investigation of DNA binding motifs from binding sites is one of the classic tasks in bioinformatics and a prerequisite for understanding gene regulation as a whole. Due to the development of sequencing technologies and the increasing number of available genomes, approaches based on phylogenetic footprinting become increasingly attractive. Phylogenetic footprinting requires phylogenetic trees with attached substitution probabilities for quantifying the evolution of binding sites, but these trees and substitution probabilities are typically not known and cannot be estimated easily.

View Article and Find Full Text PDF

Mass spectrometry is a key analytical platform for metabolomics. The precise quantification and identification of small molecules is a prerequisite for elucidating the metabolism and the detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task. Here, we present an approach for the improved detection of isotope clusters using chemical prior knowledge and the validation of detected isotope clusters depending on the substance mass using database statistics.

View Article and Find Full Text PDF

The identification of metabolites by mass spectrometry constitutes a major bottleneck which considerably limits the throughput of metabolomics studies in biomedical or plant research. Here, we present a novel approach to analyze metabolomics data from untargeted, data-independent LC-MS/MS measurements. By integrated analysis of MS(1) abundances and MS/MS spectra, the identification of regulated metabolite families is achieved.

View Article and Find Full Text PDF

Background: Transcriptional gene regulation is a fundamental process in nature, and the experimental and computational investigation of DNA binding motifs and their binding sites is a prerequisite for elucidating this process. ChIP-seq has become the major technology to uncover genomic regions containing those binding sites, but motifs predicted by traditional computational approaches using these data are distorted by a ubiquitous binding-affinity bias. Here, we present an approach for detecting and correcting this bias using inter-species information.

View Article and Find Full Text PDF

Background: For three decades, sequence logos are the de facto standard for the visualization of sequence motifs in biology and bioinformatics. Reasons for this success story are their simplicity and clarity. The number of inferred and published motifs grows with the number of data sets and motif extraction algorithms.

View Article and Find Full Text PDF

Background: Experimental datasets are becoming larger and increasingly complex, spanning different data domains, thereby expanding the requirements for respective tool support for their analysis. Networks provide a basis for the integration, analysis and visualization of multi-omics experimental datasets.

Results: Here we present VANTED (version 2), a framework for systems biology applications, which comprises a comprehensive set of seven main tasks.

View Article and Find Full Text PDF