Proc Natl Acad Sci U S A
April 2024
Malaria is a disease of global significance. Ongoing changes to the earth's climate, antimalarial resistance, insecticide resistance, and socioeconomic decline test the resilience of malaria prevention programs. Museum insect specimens present an untapped resource for studying vector-borne pathogens, spurring the question: Do historical mosquito collections contain DNA, and, if so, can museum specimens be used to reconstruct the historical epidemiology of malaria? In this Perspective, we explore molecular techniques practical to pathogen prospecting, which, more broadly, we define as the science of screening entomological museum specimens for human, animal, or plant pathogens.
View Article and Find Full Text PDFBrucellosis is a disease caused by the bacterium Brucella and typically transmitted through contact with infected ruminants. It is one of the most common chronic zoonotic diseases and of particular interest to public health agencies. Despite its well-known transmission history and characteristic symptoms, we lack a more complete understanding of the evolutionary history of its best-known species-Brucella melitensis.
View Article and Find Full Text PDFBarton . raise several statistical concerns regarding our original analyses that highlight the challenge of inferring natural selection using ancient genomic data. We show here that these concerns have limited impact on our original conclusions.
View Article and Find Full Text PDFThe historical epidemiology of plague is controversial due to the scarcity and ambiguity of available data. A common source of debate is the extent and pattern of plague re-emergence and local continuity in Europe during the 14th-18th century CE. Despite having a uniquely long history of plague (∼5,000 years), Scandinavia is relatively underrepresented in the historical archives.
View Article and Find Full Text PDFPlague has an enigmatic history as a zoonotic pathogen. This infectious disease will unexpectedly appear in human populations and disappear just as suddenly. As a result, a long-standing line of inquiry has been to estimate when and where plague appeared in the past.
View Article and Find Full Text PDFInfectious diseases are among the strongest selective pressures driving human evolution. This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis. This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population.
View Article and Find Full Text PDFObjective: To investigate variation in ancient DNA recovery of Brucella melitensis, the causative agent of brucellosis, from multiple tissues belonging to one individual MATERIALS: 14 samples were analyzed from the mummified remains of the Blessed Sante, a 14 century Franciscan friar from central Italy, with macroscopic diagnosis of probable brucellosis.
Methods: Shotgun sequencing data from was examined to determine the presence of Brucella DNA.
Results: Three of the 14 samples contained authentic ancient DNA, identified as belonging to B.
Traditionally, paleontologists have relied on the morphological features of bones and teeth to reconstruct the evolutionary relationships of extinct animals. In recent decades, the analysis of ancient DNA recovered from macrofossils has provided a powerful means to evaluate these hypotheses and develop novel phylogenetic models. Although a great deal of life history data can be extracted from bones, their scarcity and associated biases limit their information potential.
View Article and Find Full Text PDFThe temporal and spatial coarseness of megafaunal fossil records complicates attempts to to disentangle the relative impacts of climate change, ecosystem restructuring, and human activities associated with the Late Quaternary extinctions. Advances in the extraction and identification of ancient DNA that was shed into the environment and preserved for millennia in sediment now provides a way to augment discontinuous palaeontological assemblages. Here, we present a 30,000-year sedimentary ancient DNA (sedaDNA) record derived from loessal permafrost silts in the Klondike region of Yukon, Canada.
View Article and Find Full Text PDFWe thank Brinkmann and colleagues for their correspondence and their further investigation into these American Civil War Era vaccination strains. Here, we summarize the difficulties and caveats of work with ancient DNA.
View Article and Find Full Text PDFPleistocene glacial-interglacial cycles are correlated with dramatic temperature oscillations. Examining how species responded to these natural fluctuations can provide valuable insights into the impacts of present-day anthropogenic climate change. Here we present a phylogeographic study of the extinct American mastodon (Mammut americanum), based on 35 complete mitochondrial genomes.
View Article and Find Full Text PDFVaccination has transformed public health, most notably including the eradication of smallpox. Despite its profound historical importance, little is known of the origins and diversity of the viruses used in smallpox vaccination. Prior to the twentieth century, the method, source and origin of smallpox vaccinations remained unstandardised and opaque.
View Article and Find Full Text PDFIdentification of the nucleotide sequences encoding antibiotic resistance elements and determination of their association with antibiotic resistance are critical to improve surveillance and monitor trends in antibiotic resistance. Current methods to study antibiotic resistance in various environments rely on extensive deep sequencing or laborious culturing of fastidious organisms, both of which are heavily time-consuming operations. An accurate and sensitive method to identify both rare and common resistance elements in complex metagenomic samples is needed.
View Article and Find Full Text PDFObjectives: In the 14th century AD, medieval Europe was severely affected by the Great European Famine as well as repeated bouts of disease, including the Black Death, causing major demographic shifts. This high volatility led to increased mobility and migration due to new labor and economic opportunities, as evidenced by documentary and stable isotope data. This study uses ancient DNA (aDNA) isolated from skeletal remains to examine whether evidence for large-scale population movement can be gleaned from the complete mitochondrial genomes of 264 medieval individuals from England (London) and Denmark.
View Article and Find Full Text PDFArchaeological research on the Canadian island of Newfoundland increasingly demonstrates that the island's subarctic climate and paucity of terrestrial food resources did not restrict past Pre-Inuit (Dorset) and Native American (Beothuk) hunter-gatherer populations to a single subsistence pattern. This study first sought to characterize hunter-gatherer diets over the past 1500 years; and second, to assess the impact of European colonization on Beothuk lifeways by comparing the bone chemistry of Beothuk skeletal remains before and after the intensification of European settlement in the early 18th century. We employed radiocarbon dating and stable carbon and nitrogen isotope ratio analysis of bulk bone collagen from both Dorset (n = 9) and Beothuk (n = 13) cultures, including a naturally mummified 17th century Beothuk individual.
View Article and Find Full Text PDFis the extinct giant ground sloth named after Charles Darwin, who first collected its remains in South America. We have successfully obtained a high-quality mitochondrial genome at 99-fold coverage using an Illumina shotgun sequencing of a 12 880-year-old bone fragment from Mylodon Cave in Chile. Low level of DNA damage showed that this sample was exceptionally well preserved for an ancient subfossil, probably the result of the dry and cold conditions prevailing within the cave.
View Article and Find Full Text PDF, the causative agent of plague, evolved from the closely related pathogen During its emergence, is believed to have acquired its unique pathogenic characteristics through numerous gene gains/losses, genomic rearrangements, and single nucleotide polymorphism (SNP) changes. One such SNP creates a single amino acid variation in the DNA binding domain of PhoP, the response regulator in the PhoP/PhoQ two-component system. and the basal human-avirulent strains of harbor glycines at position 215 of PhoP, whereas the modern human-virulent strains (e.
View Article and Find Full Text PDFHepatitis B virus (HBV) is a ubiquitous viral pathogen associated with large-scale morbidity and mortality in humans. However, there is considerable uncertainty over the time-scale of its origin and evolution. Initial shotgun data from a mid-16th century Italian child mummy, that was previously paleopathologically identified as having been infected with Variola virus (VARV, the agent of smallpox), showed no DNA reads for VARV yet did for hepatitis B virus (HBV).
View Article and Find Full Text PDFHuman-pathogenic bacteria are found in a variety of niches, including free-living, zoonotic, and microbiome environments. Identifying bacterial adaptations that enable invasive disease is an important means of gaining insight into the molecular basis of pathogenesis and understanding pathogen emergence. , a leading cause of urinary tract infections, can be found in the environment, food, animals, and the human microbiome.
View Article and Find Full Text PDFThe complete genome sequences of two strains of variola virus (VARV) sampled from human smallpox specimens present in the Czech National Museum, Prague, were recently determined, with one of the sequences estimated to date to the mid-19th century. Using molecular clock methods, the authors of this study go on to infer that the currently available strains of VARV share an older common ancestor, at around 1350 AD, than some recent estimates based on other archival human samples. Herein, we show that the two Czech strains exhibit anomalous branch lengths given their proposed age, and by assuming a constant rate of evolutionary change across the rest of the VARV phylogeny estimate that their true age in fact lies between 1918 and 1937.
View Article and Find Full Text PDFPregnancy complications are poorly represented in the archeological record, despite their importance in contemporary and ancient societies. While excavating a Byzantine cemetery in Troy, we discovered calcified abscesses among a woman's remains. Scanning electron microscopy of the tissue revealed 'ghost cells', resulting from dystrophic calcification, which preserved ancient maternal, fetal and bacterial DNA of a severe infection, likely chorioamnionitis.
View Article and Find Full Text PDF