The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided.
View Article and Find Full Text PDFIn water treatment, filtration is often a first step to avoid interference of chemical or UV-disinfection with suspended matter (SPM). Surprisingly, in testing a ballast water filter with 25 and 40 μm mesh screens, UV-absorption (A, 254 nm) of filtered water increased with the largest increase in the finest screen. The hypothesis that filtration partly removes large particles and partly replaces them with small unfiltered ones, leading to an overall increase in absorption, was tested by measuring particle counts, particle-size distributions (PSD) and by modeling the Mass Normalized Beam Attenuation Coefficient (A/SPM) before and after filtration.
View Article and Find Full Text PDFThe European-Commission-funded project 'Citclops' (Citizens' observatory for coast and ocean optical monitoring) developed methods, tools and sensors, which can be used by citizens to monitor natural waters, with a strong focus on long-term data series related to environmental sciences. The new sensors, based on optical technologies, respond to a number of scientific, technical and societal objectives, ranging from more precise monitoring of key environmental descriptors of the aquatic environment (water colour, transparency and fluorescence) to an improved management of data collected with citizen participation. The sensors were tested, calibrated, integrated on several platforms, scientifically validated and demonstrated in the field.
View Article and Find Full Text PDFIn order to increase the monitoring capabilities of inland and coastal waters, there is a need for new, affordable, sensitive and mobile instruments that could be operated semi-automatically in the field. This paper presents a prototype device to measure chlorophyll fluorescence: the SmartFluo. The device is a combination of a smartphone offering an intuitive operation interface and an adapter implying a cuvette holder, as well as a suitable illumination source.
View Article and Find Full Text PDFThe colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne "ocean colour" instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving radiance in a limited number (5 to 10) of narrow (≈10 nm) bands. Surprisingly, the analysis of the satellite data has not yet paid attention to colour as an integral optical property that can also be retrieved from multispectral satellite data.
View Article and Find Full Text PDFMarine primary productivity is an important agent in the global cycling of carbon dioxide, a major 'greenhouse gas', and variations in the concentration of the ocean's phytoplankton biomass can therefore explain trends in the global carbon budget. Since the launch of satellite-mounted sensors globe-wide monitoring of chlorophyll, a phytoplankton biomass proxy, became feasible. Just as satellites, the Forel-Ule (FU) scale record (a hardly explored database of ocean colour) has covered all seas and oceans--but already since 1889.
View Article and Find Full Text PDF