Publications by authors named "Hendrik Fueser"

Freshwater sediments represent a sink for microplastic (<5 mm) through various processes. Thus, benthic organisms can be exposed to relatively high concentrations of microplastics. Surprisingly, studies on benthic organisms are still underrepresented in the field of ecotoxicological effect assessment of microplastics.

View Article and Find Full Text PDF

The exposure of Caenorhabditis elegans to polystyrene (PS) beads of a wide range of sizes impedes feeding, by reducing food consumption, and has been linked to inhibitory effects on the reproductive capacity of this nematode, as determined in standardized toxicity tests. Lipid storage provides energy for longevity, growth, and reproduction and may influence the organismal response to stress, including the food deprivation resulting from microplastics exposure. However, the effects of microplastics on energy storage have not been investigated in detail.

View Article and Find Full Text PDF

Toxicity tests using the model organism Caenorhabditis elegans have shown that exposure to small microplastics such as polystyrene (PS) beads lead to high body burdens and dietary restrictions that in turn inhibit reproduction. Pharyngeal pumping is the key mechanism of C. elegans for governing the uptake of food and other particles and can be easily monitored by determining the pumping rates.

View Article and Find Full Text PDF

Microplastics (MPs; <5 mm) released into freshwaters from anthropogenic sources accumulate in sediments, where they may pose an environmental threat to benthic organisms, such as nematodes. Several studies have examined the effects of nano- and microplastics on the nematode Caenorhabditis elegans, whereas reduced food availability was suggested as a possible explanation for the observed inhibitory effects. Therefore, this study should clarify whether micro-beads of different sizes (1.

View Article and Find Full Text PDF

Microplastics, anthropogenically released into freshwaters, settle in sediments, where they are directly ingested by benthic organisms. However, to the best of our knowledge, fine-scale studies of microplastic ingestion and egestion by nematodes, one of the most abundant meiofaunal taxa, are lacking. We therefore conducted a time series of the ingestion and egestion by adult Caenorhabditis elegans and Pristionchus pacificus of 0.

View Article and Find Full Text PDF

Microplastics have been detected in many different environments. Nematodes are a rife meiofaunal taxon and occupy an important trophic position in benthic food webs. Laboratory-based ingestion experiments have demonstrated the susceptibility of single nematode species to microplastic uptake.

View Article and Find Full Text PDF

Microplastics released into freshwaters from anthropogenic sources settle in the sediments, where they may pose an environmental threat to benthic organisms. However, few studies have considered the ecotoxicological hazard of microplastic particles for nematodes, one of the most abundant taxa of the benthic meiofauna. This study investigated the toxic effects of polystyrene (PS) beads (0.

View Article and Find Full Text PDF

Microplastics are hardly biodegradable and thus accumulate rather than decompose in the environment. Due to sedimentation processes, meiobenthic fauna is exposed to microplastics. Within the meiofauna, nematodes are a very abundant taxon and occupy an important position in benthic food webs by connecting lower and higher trophic levels.

View Article and Find Full Text PDF
Article Synopsis
  • The temperature-size rule suggests that as temperatures rise, ectotherms grow faster but reach smaller sizes at maturity.
  • A study on free-living nematodes showed varying thermal tolerance, with growth rates declining significantly at higher temperatures (25-30°C).
  • Results aligned with the temperature-size rule, indicating that increased temperatures decrease nematode body size and reproductive output, suggesting potential impacts on nematode populations during heatwaves.
View Article and Find Full Text PDF

Lipid storage provides energy for cell survival, growth, and reproduction and is closely related to the organismal response to stress imposed by toxic chemicals. However, the effects of toxicants on energy storage as it impacts certain life-history traits have rarely been investigated. Here, we used the nematode Caenorhabditis elegans as a test species for a chronic exposure to copper (Cu) at EC20 (0.

View Article and Find Full Text PDF