Publications by authors named "Hendrik Falck"

Article Synopsis
  • * A study of sediments from 60 northern lakes found that the type and amount of organic matter significantly influence Hg levels, with higher algal contributions in lakes below the treeline.
  • * Other factors like sediment chemistry and catchment area also play crucial roles in Hg accumulation, indicating that understanding sediment composition and local environmental conditions is essential for managing Hg levels in these lakes.
View Article and Find Full Text PDF

The estimation of geochemical background is complex in areas impacted by point sources of atmospheric emissions due to unknowns about pollutant dispersion, persistence of pollutants on the landscape, and natural concentrations of elements associated with parent material. This study combined mineralogical analysis with conventional statistical and geospatial methods to separate anthropogenically impacted soils from unimpacted soils in the Yellowknife area, Northwest Territories, Canada, a region that was exposed to 60 years of arsenic (As)-rich atmospheric mining emissions (1938-1999) and that hosts natural enrichments of As. High concentrations of As (up to 4700 mg kg) were measured in publicly accessible soils near decommissioned roaster stacks in the region and strong relationships between As and distance from the main emission sources persisted in surface soils and soils at depth in the soil profile more than 60 years after the bulk of mining emissions were released.

View Article and Find Full Text PDF

Arcellinida (testate lobose amoebae) were examined from 40 near-surface sediment samples (top 0.5 cm) from two lakes impacted by arsenic (As) contamination associated with legacy gold mining in subarctic Canada. The objectives of the study are two folds: quantify the response of Arcellinida to intra-lake variability of As and other physicochemical controls, and evaluate whether the impact of As contamination derived from two former gold mines, Giant Mine (1938-2004) and Tundra Mine (1964-1968 and 1983-1986), on the Arcellinida distribution in both lakes is comparable or different.

View Article and Find Full Text PDF

A <5 mm thick volcanic ashfall layer associated with the White River Ash (east lobe [WRAe]) originating from the eruption of Mount Churchill, Alaska (833-850 CE; 1,117-1,100 cal BP) was observed in two freeze cores obtained from Pocket Lake (62.5090°N, -114.3719°W), a small subarctic lake located within the city limits of Yellowknife, Northwest Territories, Canada.

View Article and Find Full Text PDF

We examined late Holocene (ca. 3300 yr BP to present-day) climate variability in the central Northwest Territories (Canadian Subarctic) using a diatom and sedimentological record from Danny's Lake (63.48ºN, 112.

View Article and Find Full Text PDF
Article Synopsis
  • Frame Lake in Yellowknife, Canada, has seen a decline in water quality since the 1970s due to urbanization and former gold mining, which are suspected of causing fish population collapse.
  • A study utilized Arcellinida protozoans as bioindicators to assess the lake’s hydroecological history, focusing on contamination from arsenic and the impacts of mining and urban activities on water quality.
  • The findings revealed three distinct Arcellinida assemblages, indicating changes over time and helping to identify the major environmental factors affecting the lake's ecosystem, such as arsenic levels and organic contributions.
View Article and Find Full Text PDF

Climate change is profoundly affecting seasonality, biological productivity, and hydrology in high northern latitudes. In sensitive subarctic environments exploitation of mineral resources led to contamination and it is not known how cumulative effects of resource extraction and climate warming will impact ecosystems. Gold mines near Yellowknife, Northwest Territories, subarctic Canada, operated from 1938 to 2004 and released >20,000t of arsenic trioxide (AsO) to the environment through stack emissions.

View Article and Find Full Text PDF

Arcellininids (testate amoebae) were examined from 61 surface sediment samples collected from 59 lakes in the vicinity of former gold mines, notably Giant Mine, near Yellowknife, Northwest Territories, Canada to determine their utility as bioindicators of arsenic (As), which occurs both as a byproduct of gold extraction at mines in the area and ore-bearing outcrops. Cluster analysis (Q-R-mode) and detrended correspondence analysis (DCA) reveal five arcellininid assemblages, three of which are related to varying As concentrations in the sediment samples. Redundancy analysis (RDA) showed that 14 statistically significant environmental parameters explained 57 % of the variation in faunal distribution, while partial RDA indicated that As had the greatest influence on assemblage variance (10.

View Article and Find Full Text PDF