This paper evaluates solvent-based nanofluids for in situ heavy oil upgrading during cyclic steam stimulation (CSS) applications. The study includes a comprehensive analysis of the properties and characteristics of nanofluids, as well as their performance in in situ upgrading and oil recovery. The evaluation includes laboratory experiments to investigate the effects of the nanoparticle's chemical nature, asphaltene adsorption and gasification, heavy oil recovery, and quality upgrading.
View Article and Find Full Text PDFThe addition of nanoparticles has been presented as an alternative approach to counteract the degradation of polymeric solutions for enhanced oil recovery. In this context, a nanohybrid (NH34) of partially hydrolyzed polyacrylamide (MW ∼12 MDa) and nanosilica modified with 2% 3-aminopropyltriethoxysilane (nSiO-APTES) was synthesized and evaluated. NH34 was characterized by using dynamic light scattering, Fourier-transform infrared spectroscopy, and thermogravimetric analysis.
View Article and Find Full Text PDFNanoparticles (NPs) have been proposed as additives to improve the rheological properties of polymer solutions and reduce mechanical degradation. This study presents the results of the retention experiment and the numerical simulation of the displacement efficiency of a SiO/hydrolyzed polyacrylamide (HPAM) nanohybrid (CSNH-AC). The CSNH-AC was obtained from SiO NPs (synthesized by the Stöber method) chemically modified with HPAM chains.
View Article and Find Full Text PDFIn industry, silica nanoparticles (NPs) are obtained by the fuming and the precipitation method. Fumed silica NPs are commonly used in the preparation of nanocomposites because they have an extremely low bulk density (160-190 kg/m), large surface area (50-600 m/g), and nonporous surface, which promotes strong physical contact between the NPs and the organic phase. Fumed silica has fewer silanol groups (Si-OH) on its surface than the silica prepared by the Stöber method.
View Article and Find Full Text PDFIn this study, a set of advanced characterization techniques were used to evaluate the morphological, structural, and thermal properties of a novel molecular hybrid based on silica nanoparticles/hydrolyzed polyacrylamide (CSNH-PC1), which was efficiently obtained using a two-step synthetic pathway. The morphology of the nanohybrid CSNH-PC1 was determined using scanning electron microscopy (SEM), dynamic light scattering (DLS), and nanotracking analysis (NTA) techniques. The presence of C, N, O, and Si atoms in the nanohybrid structure was verified using electron dispersive scanning (EDS).
View Article and Find Full Text PDFThe main objective of this study is to evaluate the effect of the preparation of the nanofluids based on the interactions between the surfactants, nanoparticles, and brine for being applied in ultra-low interfacial tension (IFT) for an enhanced oil recovery process. Three methodologies for the addition of the salt-surfactant-nanoparticle components for the formulation of an efficient injection fluid were evaluated: order of addition (i) salts, nanoparticles, and surfactants, (ii) salts, surfactants, and then nanoparticles, (iii) surfactants, nanoparticles, and then salts. Also, the effects of the total dissolved solids and the surfactant concentration were evaluated in the interfacial tension for selecting the better formulation of the surfactant solution.
View Article and Find Full Text PDF