Publications by authors named "Hen Yi Ju"

Background: 2-Phenylethyl acetate (2-PEAc) is a highly valued natural volatile ester with a rose-like odour that is widely used to add scent or flavour to cosmetics, soaps, foods and drinks. In this study, 2-PEAc was synthesised enzymatically by transesterification of vinyl acetate with 2-phenethyl alcohol catalysed by immobilised lipase (Novozym(®) 435) from Candida antarctic

Results: Response surface methodology and a three-level/three-factor Box-Behnken design were used to evaluate the effects of time, temperature and enzyme amount on the molar conversion % of 2-PEAc. The results showed that temperature was the most important variable.

View Article and Find Full Text PDF

A solvent-free system to produce octyl hydroxyphenylpropionate (OHPP) from p-hydroxyphenylpropionic acid (HPPA) and octanol using immobilized lipase (Novozym® 435) as a catalyst in an ultrasound-assisted packed-bed bioreactor was investigated. Response-surface methodology (RSM) and a three-level-three-factor Box-Behnken design were employed to evaluate the effects of reaction temperature (x₁), flow rate (x₂) and ultrasonic power (x₃) on the percentage of molar production of OHPP. The results indicate that the reaction temperature and flow rate were the most important variables in optimizing the production of OHPP.

View Article and Find Full Text PDF

The ultrasound-accelerated enzymatic synthesis of octyl hydroxyphenylpropionate (OHPP) from p-hydroxyphenylpropionic acid (HPPA) and octanol was investigated in this study. A commercially available immobilized lipase from Candida antarctica, Novozym 435, was used as the biocatalyst. A three-level-three-factor Box-Behnken design experiment and response surface methodology were used to evaluate the effects of temperature, reaction time, and enzyme activity on percent yield of OHPP.

View Article and Find Full Text PDF

An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion.

View Article and Find Full Text PDF

In this study, optimization of enzymatic synthesis of caffeic acid phenethyl ester (CAPE), catalyzed by immobilized lipase (Novozym 435) from Candida antarctica was investigated. Novozym 435 was used to catalyze caffeic acid and 2-phenylethanol in an isooctane system. Response surface methodology (RSM) and 5-level-4-factor central-composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction temperature (30-70 degrees C), reaction time (24-72 hours), substrate molar ratio of caffeic acid to 2-phenylethanol (1:10-1:90) and enzyme amounts (100-500 PLU) on percentage conversion of CAPE by direct esterification.

View Article and Find Full Text PDF

N-Acetyl-phenylalanine-glycinamide (N-Ac-Phe-Gly-NH(2)), a type of dipeptide derivative, was synthesized from N-acetyl phenylalanine ethyl ester and glycinamide and catalyzed by alpha-chymotrypsin, a protease, in a biphasic system. Response surface methodology with a four-factor, five-level central composite rotatable design was employed to evaluate the effects of selected parameters that included incubation time, reaction temperature, enzyme activity, and pH level on the yield of the dipeptide derivative. The results indicated that pH significantly affected the yield of N-Ac-Phe-Gly-NH(2).

View Article and Find Full Text PDF