Purpose: TILT-123 (igrelimogene litadenorepvec) is an oncolytic adenovirus armed with TNFa and IL2, designed to induce T-cell infiltration and cytotoxicity in solid tumors.
Patients And Methods: TUNIMO (NCT04695327) was a single-arm, multicenter phase I dose-escalation trial designed to assess the safety of TILT-123 in advanced solid cancers refractory to standard therapy. Patients received intravenous and intratumoral TILT-123.
Unlabelled: Some clinically significant prostate cancers are missed by MRI. We asked whether the tumor stroma in surgically treated localized prostate cancer lesions positive or negative with MRI are different in their cellular and molecular properties, and whether the differences are reflected to the clinical course of the disease. We profiled the stromal and immune cell composition of MRI-classified tumor lesions by applying multiplexed fluorescence IHC (mfIHC) and automated image analysis in a clinical cohort of 343 patients (cohort I).
View Article and Find Full Text PDFIntroduction: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, but preclinical testing of hypotheses such as combination therapies has been complicated, in part due to species incompatibility issues. For example, one of few known permissive animal models for oncolytic adenoviruses is the Syrian hamster, for which an ICI, mainly an anti-PD-L1 monoclonal antibody (mAb) was not previously available. In this study, we developed an anti-Syrian hamster PD-L1 mAb to enable the evaluation of safety and efficacy, when combining anti-PD-L1 with an oncolytic adenovirus encoding tumour necrosis factor alpha (TNFα) and interleukin-2 (IL-2) (Ad5/3-E2F-D24-hTNFα-IRES-hIL-2 or TILT-123).
View Article and Find Full Text PDFTreatment with anaplastic lymphoma kinase (ALK) inhibitors significantly improves outcome for non-small-cell lung cancer (NSCLC) patients with ALK-rearranged tumors. However, clinical resistance typically develops over time and, in the majority of cases, resistance mechanisms are ALK-independent. We generated tumor cell cultures from multiple regions of an ALK-rearranged clinical tumor specimen and deployed functional drug screens to identify modulators of ALK-inhibitor response.
View Article and Find Full Text PDFPreclinical tumor models with native tissue microenvironments provide essential tools to understand how heterogeneous tumor phenotypes relate to drug response. Here we present syngeneic graft models of aggressive, metastasis-prone histopathology-specific NSCLC tumor types driven by KRAS mutation and loss of LKB1 (KL): adenosquamous carcinoma (ASC) and adenocarcinoma (AC). We show that subcutaneous injection of primary KL; ASC cells results in squamous cell carcinoma (SCC) tumors with high levels of stromal infiltrates, lacking the source heterogeneous histotype.
View Article and Find Full Text PDFDrug sensitivity data acquired from solid tumor-derived cultures are often unsuitable for personalized treatment guidance due to the lengthy turnaround time. Here, we present a protocol for determining ex vivo drug sensitivities using fresh uncultured human lung tumor-derived EpCAM epithelial cells (FUTCs). We describe steps for drug testing in FUTCs to identify tumor cell-selective single or combination therapy in 72 h of sample processing.
View Article and Find Full Text PDFPatients with endometrial cancer differ in terms of the extent of T-cell infiltration; however, the association between T-cell subpopulations and patient outcomes remains unexplored. We characterized 285 early-stage endometrial carcinoma samples for T-cell infiltrates in a tissue microarray format using multiplex fluorescent immunohistochemistry. The proportion of T cells and their subpopulations were associated with clinicopathological features and relapse-free survival outcomes.
View Article and Find Full Text PDFFunctional profiling of a cancer patient's tumor cells holds potential to tailor personalized cancer treatment. Here, we report the utility of fresh uncultured tumor-derived EpCAM epithelial cells (FUTCs) for drug-response interrogation. Analysis of murine mutant FUTCs demonstrates pharmacological and adaptive signaling profiles comparable to subtype-matched cultured cells.
View Article and Find Full Text PDFThe transcription factor SOX9 is a key regulator of multiple developmental processes and is frequently re-expressed in non-small cell lung cancer (NSCLC). Its precise role in the progression of NSCLC histotypes has, however, remained elusive. We show that SOX9 expression relates to poor overall survival and invasive histopathology in human non-mucinous adenocarcinoma and is absent in murine early minimally invasive and low in human in situ adenocarcinoma.
View Article and Find Full Text PDFTo facilitate analysis of spatial tissue phenotypes, we created an open-source tool package named 'Spa-RQ' for 'Spatial tissue analysis: image Registration & Quantification'. Spa-RQ contains software for image registration (Spa-R) and quantitative analysis of DAB staining overlap (Spa-Q). It provides an easy-to-implement workflow for serial sectioning and staining as an alternative to multiplexed techniques.
View Article and Find Full Text PDFMost non-small cell lung cancers (NSCLC) contain nontargetable mutations, including , or alterations. By coupling drug sensitivity profiling with drug response studies, we aimed to identify drug vulnerabilities for these NSCLC subtypes. Primary adenosquamous carcinoma (ASC) or adenocarcinoma (AC) cultures were established from (KL) tumors or AC cultures from (KP) tumors.
View Article and Find Full Text PDFOrganotypic primary tissue explant cultures, which include precision-cut slices, represent the three-dimensional (3-D) tissue architecture as well as the multicellular interactions of native tissue. Tissue slices immediately cut from freshly resected tumors preserve spatial aspects of intratumor heterogeneity (ITH), thus making them useful surrogates of in vivo biology. Careful optimization of tissue slice preparation and cultivation conditions is fundamental for the predictive diagnostic potential of tumor slice explants.
View Article and Find Full Text PDFA key question in precision medicine is how functional heterogeneity in solid tumours informs therapeutic sensitivity. We demonstrate that spatial characteristics of oncogenic signalling and therapy response can be modelled in precision-cut slices from Kras-driven non-small-cell lung cancer with varying histopathologies. Unexpectedly, profiling of in situ tumours demonstrated that signalling stratifies mostly according to histopathology, showing enhanced AKT and SRC activity in adenosquamous carcinoma, and mitogen-activated protein kinase (MAPK) activity in adenocarcinoma.
View Article and Find Full Text PDFThe paradigm of molecular histopathology is shifting from a single-marker immunohistochemistry towards multiplexed detection of markers to better understand the complex pathological processes. However, there are no systems allowing multiplexed IHC (mIHC) with high-resolution whole-slide tissue imaging and analysis, yet providing feasible throughput for routine use. We present an mIHC platform combining fluorescent and chromogenic staining with automated whole-slide imaging and integrated whole-slide image analysis, enabling simultaneous detection of six protein markers and nuclei, and automatic quantification and classification of hundreds of thousands of cells in situ in formalin-fixed paraffin-embedded tissues.
View Article and Find Full Text PDFLung cancers exhibit pronounced functional heterogeneity, confounding precision medicine. We studied how the cell of origin contributes to phenotypic heterogeneity following conditional expression of Kras and loss of Lkb1 (Kras;Lkb1). Using progenitor cell-type-restricted adenoviral Cre to target cells expressing surfactant protein C (SPC) or club cell antigen 10 (CC10), we show that Ad5-CC10-Cre-infected mice exhibit a shorter latency compared with Ad5-SPC-Cre cohorts.
View Article and Find Full Text PDFAlmost half of all hereditary breast cancers (BCs) are associated with germ-line mutations in homologous recombination (HR) genes. However, the tumor phenotypes associated with different HR genes vary, making it difficult to define the role of HR in BC predisposition. To distinguish between HR-dependent and -independent features of BCs, we generated a mouse model in which an essential HR gene, Rad51c, is knocked-out specifically in epidermal tissues.
View Article and Find Full Text PDFTreatment of non-small cell lung cancer (NSCLC) is based on histological analysis and molecular profiling of targetable driver oncogenes. Therapeutic responses are further defined by the landscape of passenger mutations, or loss of tumor suppressor genes. We report here a thorough study to address the physiological role of the putative lung cancer tumor suppressor EPH receptor A3 (EPHA3), a gene that is frequently mutated in human lung adenocarcinomas.
View Article and Find Full Text PDFGermline mutations in RAD51C predispose to breast and ovarian cancers. However, the mechanism of RAD51C-mediated carcinogenesis is poorly understood. We previously reported a first-generation Rad51c-knock-out mouse model, in which a spontaneous loss of both Rad51c and Trp53 together resulted in a high incidence of sebaceous carcinomas, particularly in preputial glands.
View Article and Find Full Text PDFActivation of a cellular senescence program is a common response to prolonged oncogene activation or tumor suppressor loss, providing a physiological mechanism for tumor suppression in premalignant cells. The link between senescence and tumor suppression supports the hypothesis that a loss-of-function screen measuring bona fide senescence marker activation should identify candidate tumor suppressors. Using a high-content siRNA screening assay for cell morphology and proliferation measures, we identify 12 senescence-regulating kinases and determine their senescence marker signatures, including elevation of senescence-associated β-galactosidase, DNA damage and p53 or p16 (INK4a) expression.
View Article and Find Full Text PDFCyclooxygenase-2 (Cox-2) expression is a marker of reduced survival in gastric cancer patients, and inhibition of Cox-2 suppresses gastrointestinal carcinogenesis in experimental animal models. To investigate the role of Cox-2 in gastric carcinogenesis in vivo, we utilized trefoil factor 1 (Tff1) deficient mice, which model the neoplastic process of the stomach by developing gastric adenomas with full penetrance. These tumors express Cox-2 protein and mRNA, and we have now investigated the effects of genetic deletion of the mouse Cox-2 gene [also known as prostaglandin-endoperoxide synthase 2 (Ptgs2)] and a Cox-2 selective drug celecoxib.
View Article and Find Full Text PDFBackground: Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein expressed in several solid cancers. Our purpose was to study its role in serous ovarian cancer patients, and the association to clinicopathological variables and molecular markers.
Methods: We collected retrospectively 562 consecutive serous ovarian cancer patients treated at the Helsinki University Central Hospital.
HuR is a ubiquitously expressed RNA-binding protein that modulates gene expression at the post-transcriptional level. It is predominantly nuclear, but can shuttle between the nucleus and the cytoplasm. While in the cytoplasm HuR can stabilize its target transcripts, many of which encode proteins involved in carcinogenesis.
View Article and Find Full Text PDFThe RNA-binding protein HuR (also known as ELAV1) binds to the 3'-untranslated region of mRNAs and regulates transcript stability and translation. However, the in vivo functions of HuR are not well understood. Here, we report that murine HuR is essential for life; postnatal global deletion of Elavl1 induced atrophy of hematopoietic organs, extensive loss of intestinal villi, obstructive enterocolitis, and lethality within 10 days.
View Article and Find Full Text PDFPurpose: We have investigated the expression and regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in gastric cancer.
Experimental Design: Clinical gastric adenocarcinoma samples were analyzed by immunohistochemistry and quantitative real-time PCR for protein and mRNA expression of 15-PGDH and for methylation status of 15-PGDH promoter. The effects of interleukin-1beta (IL-1beta) and epigenetic mechanisms on 15-PGDH regulation were assessed in gastric cancer cell lines.
Background: Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently identified human oncoprotein that stabilizes the c-Myc (MYC) protein. However, the clinical relevance of CIP2A to human cancers had not been demonstrated, but the mechanism of its regulation and its clinical role in cancer were completely unknown.
Methods: Tissue microarrays consisting of 223 gastric adenocarcinoma specimens were evaluated for the presence of CIP2A using immunohistochemistry, and the association of CIP2A expression with survival was assessed using Kaplan-Meier analysis.