Publications by authors named "Hemmerich P"

A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted.

View Article and Find Full Text PDF

The amyloid precursor protein (APP) is a type I transmembrane protein with unknown physiological function but potential impact in neurodegeneration. The current study demonstrates that APP signals to the nucleus causing the generation of aggregates consisting of its adapter protein FE65, the histone acetyltransferase TIP60 and the tumour suppressor proteins p53 and PML. APP C-terminal (APP-CT50) complexes co-localize and co-precipitate with p53 and PML.

View Article and Find Full Text PDF

Burn wounds are highly susceptible sites for colonization and infection by bacteria and fungi. Large wound surface, impaired local immunity, and broad-spectrum antibiotic therapy support growth of opportunistic fungi such as Candida albicans, which may lead to invasive candidiasis. Currently, it remains unknown whether depressed host defenses or fungal virulence drive the progression of burn wound candidiasis.

View Article and Find Full Text PDF

Prevalent environmental challenges are climate change, the biodiversity crisis, and the global scale of environmental pollution. We identified the cell nucleus as a sensitive sensor for bio-effects of pollutants such as mercury and nanoparticles. As a major route of pollutant uptake into organisms is ingestion, we have developed a test system that uses single intestinal cells of the nematode roundworm Caenorhabditis elegans.

View Article and Find Full Text PDF

A major challenge in neuroscience is how to study structural alterations in the brain. Even small changes in synaptic composition could have severe outcomes for body functions. Many neuropathological diseases are attributable to disorganization of particular synaptic proteins.

View Article and Find Full Text PDF

Dengue virus (DENV) threatens almost 70% of the world's population, with no therapeutic currently available. The severe, potentially lethal forms of DENV disease (dengue hemorrhagic fever/dengue shock syndrome) are associated with the production of high level of cytokines, elicited as part of the host antiviral response, although the molecular mechanisms have not been fully elucidated. We previously showed that infection by DENV serotype 2 (DENV2) disrupts promyelocytic leukemia (PML) gene product nuclear bodies (PML-NBs) after viral protein translation in infected cells.

View Article and Find Full Text PDF

The original version of this Article contained an error in the spelling of the author Jule Müller, which was incorrectly given as Julia Müller. Additionally, in Fig. 4a, the blue-red colour scale for fold change in ageing/disease regulation included a blue stripe in place of a red stripe at the right-hand end of the scale.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are used to internalize different cargoes, including DNA, into live mammalian and plant cells. Despite many cells being easily transfected with this approach, other cells are rather "difficult" or "hard to transfect," including protist cells of the genus Leishmania. Based on our previous results in successfully internalizing proteins into Leishmania tarentolae cells, we used single CPPs and three different DNA-binding proteins to form protein-like complexes with plasmids covered with CPPs.

View Article and Find Full Text PDF

The mammalian DNA replication program is controlled at two phases, the licensing of potential origins of DNA replication in early gap 1 (G1), and the selective firing of a subset of licenced origins in the synthesis (S) phase. Upon entry into the S phase, serine/threonine-protein kinase ATR (ATR) is required for successful completion of the DNA replication program by limiting unnecessary dormant origin activation. Equally important is its activator, DNA topoisomerase 2-binding protein 1 (TopBP1), which is also required for the initiation of DNA replication after a rise in S-phase kinase levels.

View Article and Find Full Text PDF

The () gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly.

View Article and Find Full Text PDF

Disease epidemiology during ageing shows a transition from cancer to degenerative chronic disorders as dominant contributors to mortality in the old. Nevertheless, it has remained unclear to what extent molecular signatures of ageing reflect this phenomenon. Here we report on the identification of a conserved transcriptomic signature of ageing based on gene expression data from four vertebrate species across four tissues.

View Article and Find Full Text PDF

Export out of the endoplasmic reticulum (ER) involves the Sar1 and COPII machinery acting at ER exit sites (ERES). Whether and how cargo proteins are recruited upstream of Sar1 and COPII is unclear. Two models are conceivable, a recruitment model where cargo is actively transported through a transport factor and handed over to the Sar1 and COPII machinery in ERES, and a capture model, where cargo freely diffuses into ERES where it is captured by the Sar1 and COPII machinery.

View Article and Find Full Text PDF

Background: Cellular senescence is induced either internally, for example by replication exhaustion and cell division, or externally, for example by irradiation. In both cases, cellular damages accumulate which, if not successfully repaired, can result in senescence induction. Recently, we determined the transcriptional changes combined with the transition into replicative senescence in primary human fibroblast strains.

View Article and Find Full Text PDF

The endophytic fungus Piriformospora indica colonizes Arabidopsis thaliana roots and promotes plant performance, growth and resistance/tolerance against abiotic and biotic stress. Here we demonstrate that the benefits for the plant increase when the two partners are co-cultivated under stress (limited access to nutrient, exposure to heavy metals and salt, light and osmotic stress, pathogen infection). Moreover, physical contact between P.

View Article and Find Full Text PDF

Cellular senescence correlates with changes in the transcriptome. To obtain a complete view on senescence-associated transcription networks and pathways, we assessed by deep RNA sequencing the transcriptomes of five of the most commonly used laboratory strains of human fibroblasts during their transition into senescence. In a number of cases, we verified the RNA-seq data by real-time PCR.

View Article and Find Full Text PDF

Activation-induced cytidine deaminase (AID) initiates immunoglobulin diversification in germinal center B cells by targeted introduction of DNA damage. As aberrant nuclear AID action contributes to the generation of B cell lymphoma, the protein's activity is tightly regulated, e.g.

View Article and Find Full Text PDF

Ageing has been defined as a global decline in physiological function depending on both environmental and genetic factors. Here we identify gene transcripts that are similarly regulated during physiological ageing in nematodes, zebrafish and mice. We observe the strongest extension of lifespan when impairing expression of the branched-chain amino acid transferase-1 (bcat-1) gene in C.

View Article and Find Full Text PDF

Background: Rotenone inhibits the electron transfer from complex I to ubiquinone, in this way interfering with the electron transport chain in mitochondria. This chain of events induces increased levels of intracellular reactive oxygen species, which in turn can contribute to acceleration of telomere shortening and induction of DNA damage, ultimately resulting in aging. In this study, we investigated the effect of rotenone treatment in human fibroblast strains.

View Article and Find Full Text PDF

Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific.

View Article and Find Full Text PDF

In the current study we examined the combination of SAHA and SBE13 in cancer and non-cancer cells. HeLa cells displayed a synergistically reduced cell proliferation, which was much weaker in hTERT-RPE1 or NIH-3T3 cells. Cell cycle distribution differed in HeLa, hTERT-RPE1 and NIH-3T3 cells.

View Article and Find Full Text PDF

The transcription factor nuclear factor-κB (NF-κB) is crucial for the maintenance of homeostasis. It is incompletely understood how nuclear NF-κB and the crosstalk of NF-κB with other transcription factors are controlled. Here, we demonstrate that the epigenetic regulator histone deacetylase 2 (HDAC2) activates NF-κB in transformed and primary cells.

View Article and Find Full Text PDF

Cellular senescence is described to be a consequence of telomere erosion during the replicative life span of primary human cells. Quiescence should therefore not contribute to cellular aging but rather extend lifespan. Here we tested this hypothesis and demonstrate that cultured long-term quiescent human fibroblasts transit into senescence due to similar cellular mechanisms with similar dynamics and with a similar maximum life span as proliferating controls, even under physiological oxygen conditions.

View Article and Find Full Text PDF

The PML tumor suppressor has been functionally implicated in DNA damage response and cellular senescence. Direct evidence for such a role based on PML knockdown or knockout approaches is still lacking. We have therefore analyzed the irradiation-induced DNA damage response and cellular senescence in human and mouse fibroblasts lacking PML.

View Article and Find Full Text PDF

Hereditary axonopathies are frequently caused by mutations in proteins that reside in the endoplasmic reticulum (ER). Which of the many ER functions are pathologically relevant, however, remains to be determined. REEP1 is an ER protein mutated in hereditary spastic paraplegia (HSP) and hereditary motor neuropathy (HMN).

View Article and Find Full Text PDF

Modulating signaling pathways for research and therapy requires either suppression or expression of selected genes or internalization of proteins such as enzymes, antibodies, nucleotide binding proteins or substrates including nucleoside phosphates and enzyme inhibitors. Peptides, proteins and nucleotides are transported by fusing or conjugating them to cell penetrating peptides or by formation of non-covalent complexes. The latter is often preferred because of easy handling, uptake efficiency and auto-release of cargo into the live cell.

View Article and Find Full Text PDF