The era of molecular medicine arose as we began to diagnose and treat diseases based on understanding how genes, proteins, and cells work, providing optimal therapeutic care through molecular profiling. Central to molecular medicine is molecular recognition, which is underpinned by techniques involving omics analysis, gene editing, and targeted agents. Recent advancements in these tools not only expand our understanding of biological processes but also aid in the development of diagnostic and treatment modalities at the molecular level, thus bridging the gap between medical research and clinical applications.
View Article and Find Full Text PDFThe development of a highly efficient, nondestructive, and in vitro/vivo-applicable universal delivery strategy of therapeutic macromolecules into desired cells and tissues is very challenging. Photothermal methods have advantages in intracellular delivery, particularly in in vivo manipulation. However, the inability of directional transmission of exogenous molecules limits their delivery efficiency.
View Article and Find Full Text PDFIntracellular delivery of exogenous macromolecules by photothermal methods is still not widely employed despite its universal and clear effect on cell membrane rupture. The main causes are the unsatisfactory delivery efficiency, poor cell activity, poor cell harvest, and sophisticated operation; these challenges stem from the difficulty of simply controlling laser hotspots. Here, we constructed latent-photothermal surfaces based on multiwall carbon nanotube-doped poly(dimethyl siloxane), which can deliver cargoes with high delivery efficiency and cell viability.
View Article and Find Full Text PDFBioinspired superhydrophobic substrates have been used in many scientific and technological areas. These substrates can trap atmosphere-linked air pockets at the solid-liquid interface, offering an opportunity to address the oxygen-deficit problem in many reaction systems. Herein, we addressed the oxygen-deficit problem in metal oxide electrochemical deposition by using a triphase electrode possessing an air-liquid-solid joint interface.
View Article and Find Full Text PDFGaseous reactants play a key role in a wide range of biocatalytic reactions, however reaction kinetics are generally limited by the slow mass transport of gases (typically oxygen) in or through aqueous solutions. Inspired by the morphologies of natural non-wetting surfaces, herein we address this limitation by developing a triphase reaction system possessing a triphase gas-solid-liquid interface. As a proof of concept, we study the kinetics of glucose oxidase (GOx) catalyzed reactions using a triphase system fabricated by layering GOx upon superhydrophobic mesoporous ZnO nanowire arrays through which oxygen, needed for the enzymatic reaction, is supplied directly from the atmosphere to the liquid-solid interface.
View Article and Find Full Text PDF