Objective: To explore the experimental justification of cerebrospinal fluid (CSF) amplitude and elastic fluctuations of ventricles, we extend our previous computational study to models with rotational flow and suitable boundary conditions. In the present study, we include an elastic effect due to the interaction with the thermal solutal model which accounts for CSF motion which flows rotationally due to hydrocephalus flows within the spinal canal.
Methods: Using an analytical pertubation method, we have attempted a new model to justify CSF flow movement using the influences of wall temperature difference.