Background: Internal rotation in adduction is often limited after reverse total shoulder arthroplasty (rTSA), but the origins of this functional deficit are unclear. Few studies have directly compared individuals who can and cannot perform internal rotation in adduction. Little data on underlying 3D humerothoracic, scapulothoracic, and glenohumeral joint relationships in these patients are available.
View Article and Find Full Text PDFBackground: Optimal implant placement in reverse total shoulder arthroplasty (rTSA) remains controversial. Specifically, the optimal glenoid inclination is unknown. Therefore, a cadaveric shoulder simulator with 3-dimentional human motion specific to rTSA was used to study joint contact and muscle forces as a function of glenoid component inclination.
View Article and Find Full Text PDFBackground: Reverse total shoulder arthroplasty (rTSA) typically restores active arm elevation. Prior studies in patients with rTSA during tasks that load the arm had limitations that obscured underlying three-dimensional (3D) kinematic changes and the origins of motion restrictions. Understanding the scapulothoracic and glenohumeral contributions to loaded arm elevation will uncover where functional deficits arise and inform strategies to improve rTSA outcomes.
View Article and Find Full Text PDFBackground: Although typically favorable in outcome, anatomic total shoulder arthroplasty (aTSA) can require long-term revision. The most common cause for revision is glenoid loosening, which may result from eccentric cyclic forces and joint translations. "Rocking" of the glenoid component may be exacerbated by the joint geometry, such as glenoid inclination and version.
View Article and Find Full Text PDFIn vitro simulation of three-dimensional (3D) shoulder motion using in vivo kinematics obtained from human subjects allows investigation of clinical conditions in the context of physiologically relevant biomechanics. Herein, we present a framework for laboratory simulation of subject-specific kinematics that combines individual 3D scapular and humeral control in cadavers. The objectives were to: (1) robotically simulate seven healthy subject-specific 3D scapulothoracic and glenohumeral kinematic trajectories in six cadavers, (2) characterize system performance using kinematic orientation accuracy and repeatability, and muscle force repeatability metrics, and (3) analyze effects of input kinematics and cadaver specimen variability.
View Article and Find Full Text PDFBackground: Clinical imaging often excludes the distal humerus, confounding definition of common whole-bone coordinate systems. While proximal anatomy coordinate systems exist, no simple method transforms them to whole-bone systems. Their influence on humeral kinematics is unknown.
View Article and Find Full Text PDFAge affects gross shoulder range of motion (ROM), but biomechanical changes over a lifetime are typically only characterized for the humerothoracic joint. Suitable age-related baselines for the scapulothoracic and glenohumeral contributions to humerothoracic motion are needed to advance understanding of shoulder injuries and pathology. Notably, biomechanical comparisons between younger or older populations may obscure detected differences in underlying shoulder motion.
View Article and Find Full Text PDFBackground: Interpretation of shoulder motion across studies has been complicated due to the use of numerous scapular coordinate systems in the literature. Currently, there are no simple means by which to compare scapular kinematics between coordinate system definitions when data from only one coordinate system is known.
Research Question: How do scapular kinematics vary based on the choice of coordinate system and can average rotation matrices be used to accurately convert kinematics between scapular local coordinate systems?
Methods: Average rotation matrices derived from anatomic landmarks of 51 cadaver scapulae (29 M/22 F; 59 ± 13 yrs; 26R/25 L; 171 ± 11 cm; 70 ± 19 kg; 23.
Clin Biomech (Bristol)
January 2019
Background: Trauma can fracture the scapular neck. Typically, a single plate along the lateral scapula border affixes the glenoid fragment to the scapula. This method is limited by difficulty in screw placement, frequent excessive soft tissue dissection, and risk for neurovascular injury.
View Article and Find Full Text PDF