While ventricular shunts are the main treatment for adult hydrocephalus, shunt malfunction remains a common problem that can be challenging to diagnose. Computer vision-derived algorithms present a potential solution. We designed a feasibility study to see if such an algorithm could automatically predict ventriculomegaly indicative of shunt failure in a real-life adult hydrocephalus population.
View Article and Find Full Text PDFObjective: This study investigates variations in hippocampal barque occurrence during sleep and compares findings to respective variations of their scalp manifestation as 14&6/sec positive spikes.
Methods: From 11 epilepsy patients, 12 non-epileptogenic hippocampi with barques were identified for this study. Using the first seizure-free whole-night sleep stereo-encephalography (sEEG) recording, we performed sleep staging and measured the occurrence of barques and 14&6/sec positive spikes variants.
Background: Pain evaluation remains largely subjective in neurosurgical practice, but machine learning provides the potential for objective pain assessment tools.
Objective: To predict daily pain levels using speech recordings from personal smartphones of a cohort of patients with diagnosed neurological spine disease.
Methods: Patients with spine disease were enrolled through a general neurosurgical clinic with approval from the institutional ethics committee.
Background: Laser interstitial thermal therapy (LITT) is a minimally invasive treatment option for intracranial tumors that are challenging to treat via traditional methods; however, its safety and efficacy are not yet well validated in the literature. The objectives of the study were to assess the available evidence of the indications and adverse events (AEs) of LITT and 1-year progression-free survival and 1-year overall survival in the treatment of primary and secondary brain tumors.
Methods: A comprehensive literature search was conducted through the databases PubMed, Embase, and the Cochrane Library until October 2021.
Objective: To investigate whether barques can be localized across the hippocampal longitudinal axis with sufficient specificity.
Methods: We identified 51 focal epilepsy patients implanted with a minimum of two electrodes - unilateral anterior and posterior - in either hippocampus. We used visual inspection of the intracranial electroencephalogram (iEEG) and 3D brain volume spectrum-based statistical parametric mapping (SPM) to localize barques.
Objective: The question of whether a patient with presumed temporal lobe seizures should proceed directly to temporal lobectomy surgery versus undergo intracranial monitoring arises commonly. We evaluate the effect of intracranial monitoring on seizure outcome in a retrospective cohort of consecutive subjects who specifically underwent an anterior temporal lobectomy (ATL) for refractory temporal lobe epilepsy (TLE).
Methods: We performed a retrospective analysis of 85 patients with focal refractory TLE who underwent ATL following: (a) intracranial monitoring via craniotomy and subdural/depth electrodes (SDE/DE), (b) intracranial monitoring via stereotactic electroencephalography (sEEG), or (c) no intracranial monitoring (direct ATL-dATL).
Objective: To assess whether hippocampal spindles and barques are markers of epileptogenicity.
Methods: Focal epilepsy patients that underwent stereo-electroencephalography implantation with at least one electrode in their hippocampus were selected (n = 75). The occurrence of spindles and barques in the hippocampus was evaluated in each patient.
Background: Anterior temporal lobectomy (ATL) is the most effective treatment for drug-resistant mesial temporal lobe epilepsy. Extrapial en bloc hippocampal resection facilitates complete removal of the hippocampus. With increasing use of minimally invasive treatments, considering open resection techniques that optimize the integrity of tissue specimens is important both for obtaining the correct histopathological diagnosis and for further study.
View Article and Find Full Text PDF