Publications by authors named "Helvecio D Coletta Filho"

The rhizosphere microbiome is known to contain beneficial microorganisms that promote plant growth and increase tolerance to abiotic and biotic stresses. Understanding citrus microbiome diversity and the percentage of diversity that can be recovered in the laboratory is essential for developing innovative approaches to improve plant health and promote sustainable agricultural practices. However, information about the citrus root microbiome, especially in the context of exploring commercial citrus growing areas to identify beneficial plant growth-promoting rhizobacteria (PGPR), is scarce.

View Article and Find Full Text PDF

Introduction: Citrus is one of the most important fruit crops worldwide, and the root-associated microbiota can have a profound impact on tree health and growth.

Methods: In a collaborative effort, the International Citrus Microbiome Consortium investigated the global citrus root microbiota with samples collected from nine citrus-producing countries across six continents. We analyzed 16S rDNA and ITS2 amplicon sequencing data to identify predominant prokaryotic and fungal taxa in citrus root samples.

View Article and Find Full Text PDF

Background: Xylella fastidiosa is a multi-host bacterium that can be detected in hundreds of plant species including several crops. Diseases caused by X. fastidiosa are considered a threat to global food production.

View Article and Find Full Text PDF

The Global Plant Health Assessment (GPHA) is a collective, volunteer-based effort to assemble expert opinions on plant health and disease impacts on ecosystem services based on published scientific evidence. The GPHA considers a range of forest, agricultural, and urban systems worldwide. These are referred to as (Ecoregion × Plant System), i.

View Article and Find Full Text PDF

While there are documented host shifts in many bacterial plant pathogens, the genetic foundation of host shifts is largely unknown. Xylella fastidiosa is a bacterial pathogen found in over 600 host plant species. Two parallel host shifts occurred-in Brazil and Italy-in which X.

View Article and Find Full Text PDF

This study addresses the interactive effects of deficit irrigation and huanglongbing (HLB) infection on the physiological, biochemical, and oxidative stress responses of sweet orange trees. We sought to answer: (i) What are the causes for the reduction in water uptake in HLB infected plants? (ii) Is the water status of plants negatively affected by HLB infection? (iii) What are the key physiological traits impaired in HLB-infected plants? and (iv) What conditions can mitigate both disease severity and physiological/biochemical impairments in HLB-infected plants? Two water management treatments were applied for 11 weeks to 1-year-old-trees that were either healthy (HLB-) or infected with HLB (+) and grown in 12-L pots. Half of the trees were fully irrigated (FI) to saturation, whereas half were deficit-irrigated (DI) using 40% of the water required to saturate the substrate.

View Article and Find Full Text PDF

subsp. , once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of subsp.

View Article and Find Full Text PDF

Background: Pathogens with a global distribution face diverse biotic and abiotic conditions across populations. Moreover, the ecological and evolutionary history of each population is unique. Xylella fastidiosa is a xylem-dwelling bacterium infecting multiple plant hosts, often with detrimental effects.

View Article and Find Full Text PDF

Pathogen introductions have led to numerous disease outbreaks in naive regions of the globe. The plant pathogen has been associated with various recent epidemics in Europe affecting agricultural crops, such as almond, grapevine, and olive, but also endemic species occurring in natural forest landscapes and ornamental plants. We compared whole-genome sequences of subspecies from America and strains associated with recent outbreaks in southern Europe to infer their likely origins and paths of introduction within and between the two continents.

View Article and Find Full Text PDF

is an economically important bacterial plant pathogen. With insights gained from 72 genomes, this study investigated differences among the three main subspecies, which have allopatric origins: subsp. , , and The origin of recombinogenic subsp.

View Article and Find Full Text PDF

Citrus sudden death-associated virus (CSDaV) is a member of the genus Marafivirus in the family Tymoviridae, and has been associated with citrus sudden death (CSD) disease in Brazil. Difficulties in the purification of CSDaV from infected citrus plants have prevented progress in the investigation of the role of this virus in CSD and an understanding of its molecular biology. In this work, we have constructed a full-length cDNA clone of CSDaV driven by the 35S promoter (35SRbz-CSDaV).

View Article and Find Full Text PDF

Citrus is a globally important, perennial fruit crop whose rhizosphere microbiome is thought to play an important role in promoting citrus growth and health. Here, we report a comprehensive analysis of the structural and functional composition of the citrus rhizosphere microbiome. We use both amplicon and deep shotgun metagenomic sequencing of bulk soil and rhizosphere samples collected across distinct biogeographical regions from six continents.

View Article and Find Full Text PDF

In Brazil, the host expansion of Xylella fastidiosa subsp. pauca was recently demonstrated with the report of diseased olive trees (Olea europaea), whose symptoms were associated with olive quick decline syndrome previously described in southern Italy. We employed both polymerase chain reaction-based techniques and culture medium isolation to investigate the geographic distribution of X.

View Article and Find Full Text PDF

Xylella fastidiosa subsp. pauca is genetically diverse and has many vector species. However, there is limited information on vector specificity and efficiency for different sequence types (STs) within the pathogen subspecies.

View Article and Find Full Text PDF

The Asian citrus psyllid (ACP) Diaphorina citri, vector of 'Candidatus Liberibacter asiaticus' (CLas), the putative causal agent of citrus Huanglongbing (HLB), is controlled by application of insecticides, which, although effective, has resulted in serious biological imbalances. New management tools are needed, and the technique known as "trap crop" has been attracting attention. A potential plant for use as a trap crop in the management of the ACP is Murraya koenigii (curry leaf).

View Article and Find Full Text PDF

Citrus sudden death (CSD) has caused the death of approximately four million orange trees in a very important citrus region in Brazil. Although its etiology is still not completely clear, symptoms and distribution of affected plants indicate a viral disease. In a search for viruses associated with CSD, we have performed a comparative high-throughput sequencing analysis of the transcriptome and small RNAs from CSD-symptomatic and -asymptomatic plants using the Illumina platform.

View Article and Find Full Text PDF

(CSDaV) is a monopartite positive-sense single-stranded RNA virus that was suggested to be associated with citrus sudden death (CSD) disease in Brazil. Here, we report the first study of the genetic structure and molecular variability among 31 CSDaV isolates collected from both symptomatic and asymptomatic trees in CSD-affected areas. Analyses of partial nucleotide sequences of five domains of the CSDaV genomic RNA, including those encoding for the methyltransferase, the multi-domain region (MDR), the helicase, the RNA-dependent RNA polymerase and the coat protein, showed that the MDR coding region was the most diverse region assessed here, and a possible association between this region and virus adaption to different host or plant tissues is considered.

View Article and Find Full Text PDF

Xylella fastidiosa, an economically important plant-pathogenic bacterium, infects both coffee and citrus trees in Brazil. Although X. fastidiosa in citrus is well studied, knowledge about the population structure of this bacterium infecting coffee remains unknown.

View Article and Find Full Text PDF

Homologous recombination affects the evolution of bacteria such as Xylella fastidiosa, a naturally competent plant pathogen that requires insect vectors for dispersal. This bacterial species is taxonomically divided into subspecies, with phylogenetic clusters within subspecies that are host specific. One subspecies, pauca, is primarily limited to South America, with the exception of recently reported strains in Europe and Costa Rica.

View Article and Find Full Text PDF

Strains of Xylella fastidiosa constitute a complex group of bacteria that develop within the xylem of many plant hosts, causing diseases of significant economic importance, such as Pierce's disease in North American grapevines and citrus variegated chlorosis in Brazil. X. fastidiosa has also been obtained from other host plants, in direct correlation with the development of diseases, as in the case of coffee leaf scorch (CLS)--a disease with potential to cause severe economic losses to the Brazilian coffee industry.

View Article and Find Full Text PDF

Over the last decade, the plant disease huanglongbing (HLB) has emerged as a primary threat to citrus production worldwide. HLB is associated with infection by phloem-limited bacteria ('Candidatus Liberibacter' spp.) that are transmitted by the Asian citrus psyllid, Diaphorina citri.

View Article and Find Full Text PDF

The ecology of plant pathogens of perennial crops is affected by the long-lived nature of their immobile hosts. In addition, changes to the genetic structure of pathogen populations may affect disease epidemiology and management practices; examples include local adaptation of more fit genotypes or introduction of novel genotypes from geographically distant areas via human movement of infected plant material or insect vectors. We studied the genetic structure of Xylella fastidiosa populations causing disease in sweet orange plants in Brazil at multiple scales using fast-evolving molecular markers (simple-sequence DNA repeats).

View Article and Find Full Text PDF

Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC). The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field.

View Article and Find Full Text PDF

We report here the draft genome sequence of "Candidatus Liberibacter americanus" strain PW_SP. The 1,176,071-bp genome, with 31.6% G+C content, comprises 948 open reading frames, 38 tRNAs, and three complete rRNAs.

View Article and Find Full Text PDF

Background: Huanglongbing (HLB) is one of the most destructive citrus diseases in the world. The disease is associated with the presence of a fastidious, phloem-limited α- proteobacterium, 'Candidatus Liberibacter asiaticus', 'Ca. Liberibacter africanus' or 'Ca.

View Article and Find Full Text PDF