Publications by authors named "Helty Adisetiyo"

We have developed a dual-antigen COVID-19 vaccine incorporating genes for a modified SARS-CoV-2 spike protein (S-Fusion) and the viral nucleocapsid (N) protein with an Enhanced T-cell Stimulation Domain (N-ETSD) to increase the potential for MHC class II responses. The vaccine antigens are delivered by a human adenovirus serotype 5 platform, hAd5 [E1-, E2b-, E3-], previously demonstrated to be effective in the presence of Ad immunity. Vaccination of rhesus macaques with the hAd5 S-Fusion + N-ETSD vaccine by subcutaneous prime injection followed by two oral boosts elicited neutralizing anti-S IgG and T helper cell 1-biased T-cell responses to both S and N that protected the upper and lower respiratory tracts from high titer (1 x 10 TCID) SARS-CoV-2 challenge.

View Article and Find Full Text PDF

We have developed a COVID-19 vaccine, hAd5 S-Fusion + N-ETSD, that expresses SARS-CoV-2 spike (S) and nucleocapsid (N) proteins with modifications to increase immune responses delivered using a human adenovirus serotype 5 (hAd5) platform. Here, we demonstrate subcutaneous (SC) prime and SC boost vaccination of CD-1 mice with this dual-antigen vaccine elicits T-helper cell 1 (Th1) biased T-cell and humoral responses to both S and N that are greater than those seen with hAd5 S wild type delivering only unmodified S. We then compared SC to intranasal (IN) prime vaccination with SC or IN boosts and show that an IN prime with an IN boost is as effective at generating Th1 biased humoral responses as the other combinations tested, but an SC prime with an IN or SC boost elicits greater T cell responses.

View Article and Find Full Text PDF

Increasing evidence supports the importance of the breast milk microbiome in seeding the infant gut. However, the origin of bacteria in milk and the process of milk microbe-mediated seeding of infant intestine need further elucidation. Presumed sources of bacteria in milk include locations of mother-infant and mother-environment interactions.

View Article and Find Full Text PDF

Background: Recent advances in sequencing technologies and bioinformatics tools have allowed for large-scale microbiome studies that are rapidly advancing medical research. However, small changes in technique or analysis can significantly alter the results and lead to conflicting findings. Quantifying the technical versus biological variation expected in targeted 16S rRNA gene sequencing studies and how this variation changes with input biomass is critical to guide meaningful interpretation of the current literature and plan future research.

View Article and Find Full Text PDF

Importance: Establishment of the infant microbiome has lifelong implications on health and immunity. Gut microbiota of breastfed compared with nonbreastfed individuals differ during infancy as well as into adulthood. Breast milk contains a diverse population of bacteria, but little is known about the vertical transfer of bacteria from mother to infant by breastfeeding.

View Article and Find Full Text PDF

Background: Whole-genome sequencing (WGS) is an emerging and powerful technique by which to perform epidemiological studies in outbreak situations.

Methods: WGS was used to identify and evaluate an outbreak of OXA-232-expressing carbapenem-resistant Klebsiella pneumoniae (CRKP) transmitted to 16 patients over the course of 40 weeks via endoscopic retrograde cholangiopancreatography procedures at a single institution. WGS was performed on 32 OXA-232 CRKP isolates (1-7 per patient) and single-nucleotide variants (SNVs) were analyzed, with reference to the index patient's isolate.

View Article and Find Full Text PDF

More than 1 million HIV-exposed, uninfected infants are born annually to HIV-positive mothers worldwide. This growing population of infants experiences twice the mortality of HIV-unexposed infants. We found that although there were very few differences seen in the microbiomes of mothers with and without HIV infection, maternal HIV infection was associated with changes in the microbiome of HIV-exposed, uninfected infants.

View Article and Find Full Text PDF

Recent high-throughput studies revealed recurrent RUNX1 mutations in breast cancer, specifically in oestrogen receptor-positive (ER(+)) tumours. However, mechanisms underlying the implied RUNX1-mediated tumour suppression remain elusive. Here, by depleting mammary epithelial cells of RUNX1 in vivo and in vitro, we demonstrate combinatorial regulation of AXIN1 by RUNX1 and oestrogen.

View Article and Find Full Text PDF

Whole genome sequencing (WGS) was compared to pulse-field gel electrophoresis (PFGE) of XbaI-digested genomic DNA, as methods by which to evaluate a potential transmission of carbapenem-resistant Klebsiella pneumoniae between 2 hospital inpatients. PFGE result demonstrated only 1-band difference between the isolates, suggesting probable relatedness. In contrast, while WGS data demonstrated the same sequence type and very similar chromosomal sequences, over 20 single nucleotide variants were identified between the isolates, bringing into question whether there was a transmission event.

View Article and Find Full Text PDF

Androgen receptor (AR) variants are associated with resistance to anti androgen therapy both in human prostate cancer cell lines and clinical samples. These observations support the hypothesis that AR isoform accumulation is a consequence of selective therapeutic pressure on the full length AR. The Pten deficient prostate cancer model proceeds with well-defined kinetics including progression to castration resistant prostate cancer (CRPC).

View Article and Find Full Text PDF

We describe a novel model for investigation of genetically normal human osteoblasts in culture. SK11 is a clonal progenitor cell line derived from human embryonic stem cells. Initially selected based on the expression of chondrogenic markers when differentiated in micromass culture, SK11 cells display typical mRNA expression patterns of bone phenotypic genes under osteogenic conditions.

View Article and Find Full Text PDF

We previously established a role for cancer-associated fibroblasts (CAF) in enhancing the self-renewal and differentiation potentials of putative prostate cancer stem cells (CSC). Our published work focused on androgen-dependent prostate cancer (ADPC) using the conditional Pten deletion mouse model. Employing the same model, we now describe the interaction of CAF and CSC in castration-resistant prostate cancer (CRPC).

View Article and Find Full Text PDF

Changes to androgen signaling during prostate carcinogenesis are associated with both inhibition of cellular differentiation and promotion of malignant phenotypes. The androgen receptor (AR)-binding transcription factor RUNX2 has been linked to prostate cancer progression but the underlying mechanisms have not been fully defined. In this study, we investigated the genome-wide influence of RUNX2 on androgen-induced gene expression and AR DNA binding in prostate cancer cells.

View Article and Find Full Text PDF

Unlabelled: Annexin A1 (AnxA1), a phospholipid-binding protein and regulator of glucocorticoid-induced inflammatory signaling, has implications in cancer. Here, a role for AnxA1 in prostate adenocarcinoma was determined using primary cultures and a tumor cell line (cE1), all derived from the conditional Pten deletion mouse model of prostate cancer. AnxA1 secretion by prostate-derived cancer-associated fibroblasts (CAF) was significantly higher than by normal prostate fibroblasts (NPF).

View Article and Find Full Text PDF

Several studies have focused on the effect of bone morphogenetic protein (BMP) on prostate cancer homing and growth at distant metastatic sites, but very little effect at the primary site. Here, we used two cell lines, one (E8) isolated from a primary tumor and the other (cE1) from a recurrent tumor arising at the primary site, both from the conditional Pten deletion mouse model of prostatic adenocarcinoma. Over-expression of the BMP antagonist noggin inhibited proliferation of cE1 cells in vitro while enhancing their ability to migrate.

View Article and Find Full Text PDF

The inhibitor of apoptosis protein survivin is expressed in most cancers. Using the conditional PTEN deletion mouse model, we previously reported that survivin levels increase with prostate tumor growth. Here we evaluated the functional role of survivin in prostate tumor growth.

View Article and Find Full Text PDF

We show that the VEGF receptor neuropilin-2 (NRP2) is associated with high-grade, PTEN-null prostate cancer and that its expression in tumor cells is induced by PTEN loss as a consequence of c-Jun activation. VEGF/NRP2 signaling represses insulin-like growth factor-1 receptor (IGF-IR) expression and signaling, and the mechanism involves Bmi-1-mediated transcriptional repression of the IGF-IR. This mechanism has significant functional and therapeutic implications that were evaluated.

View Article and Find Full Text PDF

For a study of interactions between the cancer-associated fibroblasts (CAFs) and the putative prostate cancer stem cells (CSCs), we used a conditional Pten deletion mouse model of prostatic adenocarcinoma to isolate both CAF cultures and CSC-enriched cell fractions from the primary tumors. The CSC subpopulation exhibited a collective phenotype of Lin(-)/SCA-1(hi)/CD49f(hi)/p63(hi)/CK5(hi)/AR(lo)/CK18(lo)/Survivin(hi)/Runx2(hi) and contained cells with the ability to both self-renew and differentiate into basal and luminal cells in vitro. The spheroids generated from the CSC-enriched subpopulation mimicked the glandular structures that could be produced from a similarly isolated cell fraction from the normal mouse prostate.

View Article and Find Full Text PDF

Signals originating from cancer-associated fibroblasts (CAF) may positively regulate proliferation and tumorigenicity in prostate cancer. In this study, we investigated whether CAFs may regulate the biology of prostate cancer stem cells (CSC) by using a conditional Pten deletion mouse model of prostate adenocarcinoma to isolate both CAF cultures and CSC-enriched cell fractions from the tumors. CSCs that were isolated possessed self-renewal, spheroid-forming, and multipotential differentiation activities in tissue culture, segregating with a cell fraction exhibiting a signature expression phenotype, including SCA-1 (high), CD49f (high), CK5 (high), p63 (high), Survivin (high), RUNX2 (high), CD44 (low), CD133 (low), CK18 (low), and Androgen Receptor (low).

View Article and Find Full Text PDF

The structure of actin in its monomeric form is known at high resolution, while the structure of filamentous F-actin is only understood at considerably lower resolution. Knowing precisely how the monomers of actin fit together would lead to a deeper understanding of the dynamic behavior of the actin filament. Here, a series of crystal structures of actin dimers are reported which were prepared by cross-linking in either the longitudinal or the lateral direction in the filament state.

View Article and Find Full Text PDF

The 2.5-A resolution crystal structure is reported for an actin dimer, composed of two protomers cross-linked along the longitudinal (or vertical) direction of the F-actin filament. The crystal structure provides an atomic resolution view of a molecular interface between actin protomers, which we argue represents a near-native interaction in the F-actin filament.

View Article and Find Full Text PDF