Duplication of genes at different time period, through recurrent and frequent polyploidization events, have played a major role in plant evolution, adaptation and diversification. Interestingly, some of the ancestral duplicated genes (referred as paleologs), have been maintained for millions of years, and there is still a poor knowledge of the reasons of their retention, especially when testing the phenotypic effect of individual copies by using functional genetic approaches. To fill this gap, we performed functional genetic (CRISPR-Cas9), physiological, transcriptomic and evolutionary studies to finely investigate this open question, taking the example of the petC gene (involved in cytochrome b6/f and thus impacting photosynthesis) that is present in four paleologous copies in the oilseed crop Brassica napus.
View Article and Find Full Text PDFMeganucleases are rare cutting enzymes that can generate DNA modifications and are part of the plant genome editing toolkit although they lack versatility. Here, we evaluated the use of two meganucleases, I-SceI and a customized meganuclease, in tomato and oilseed rape. Different strategies were explored for the use of these meganucleases.
View Article and Find Full Text PDF