Microbiological safety in food industry are always a concern regarding sublethal tolerance in bacteria for common and natural sanitizers. Natural bacteriocins, such as nisin (NIS), may negatively interfere in the efficiency of major compounds of essential oils against foodborne pathogenic bacteria. However, nanoemulsioned forms increase the bactericidal potential of natural compounds acting synergistically.
View Article and Find Full Text PDFCarotenoids are lipophilic compounds that provide important health-related benefits for human body functions. However, they have low water solubility and chemical stability, hence their incorporation in aqueous-based foods requires the use of emulsion-based lipid carriers. This work aimed at elucidating whether their inclusion in emulsion-based Solid Lipid Nanoparticles (SLNs) can provide a protective effect against β-carotene degradation under different environmental conditions in comparison to liquid lipid nanoemulsions.
View Article and Find Full Text PDFSolid lipid nanoparticles (SLNs) are emulsion-based carriers of lipophilic bioactive compounds. However, their digestibility may be affected by the solid lipid phase composition. Hence, the aim of this work was to study the in vitro lipolysis kinetics as well as the relationship between the lipid digestion, micelle fraction composition and β-carotene bioaccessibility of SLNs with different solid lipids, being blends of medium chain triglyceride (MCT) oil, glyceryl stearate (GS) or hydrogenated palm oil (HPO) as compared to liquid lipid nanoparticles (LLNs) with pure MCT.
View Article and Find Full Text PDFFood Chem
December 2017
Essential oils, as well as their separate components, have shown promise as alternatives to synthetic preservatives. Therefore, it would be interesting to optimize the effect of these compounds and to evaluate their applicability as additives in food. To this end, six peracetyl and deacetyl glycosides were synthesized from eugenol, isoeugenol and dihydroeugenol.
View Article and Find Full Text PDF