Activation of material is of interest for waste treatment and hazard assessment. In particular, activation of printed circuit can lead to the production of radionuclides at an isomeric state, for example, coming from silver. In particle accelerators, the production of silver isomeric states mainly come from low energy neutrons, below 20 MeV.
View Article and Find Full Text PDFMaintenance activities and operations of high-energy particle accelerators can lead to the collection of radioactive equipment as well as waste materials. In order to ensure their proper classification as radioactive or non-radioactive, one has to quantify the activities of radionuclides produced. According to the regulatory requirements in Switzerland, these activities need to be compared with nuclide-specific clearance limits.
View Article and Find Full Text PDFThe CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations.
View Article and Find Full Text PDFRadiat Prot Dosimetry
July 2011
Particle accelerators and their surroundings are locations of residual radioactivity production that is induced by the interaction of high-energy particles with matter. This paper gives an overview of the principles of activation caused at proton accelerators, which are the main machines operated at Conseil Européen pour la Recherche Nucléaire. It describes the parameters defining radio-nuclide production caused by beam losses.
View Article and Find Full Text PDFThis article gives an overview of selected high-dose dosimetric methods suitable for use in accelerators in research and medicine for reference, transfer and routine dosimetry. This comprises solid state, glass, plastic and liquid chemical systems as well as ionisation chambers and calorimeters. The dose covered varies from 0.
View Article and Find Full Text PDFCERN's radiation protection group operates a network of simple and robust ionisation chambers that are installed inside CERN's accelerator tunnels. These ionisation chambers are used for the remote reading of ambient dose rate equivalents inside the machines during beam-off periods. This Radiation Protection Monitor for dose rates due to Induced Radioactivity ('PMI', trade name: PTW, Type 34031) is a non-confined air ionisation plastic chamber which is operated under atmospheric pressure.
View Article and Find Full Text PDFCERN is designing a 2.2-GeV Superconducting Proton Linac (SPL) with a beam power of 4 MW, to be used for the production of a neutrino superbeam. The SPL front end will initially accelerate 2 x 10(14) negative hydrogen ions per second up to an energy of 120 MeV.
View Article and Find Full Text PDF