One major goal of biobanks is to provide the best possible biospecimen quality for research use. This can be achieved, notably in accredited structures, by using standardized procedures for collection, processing, and storage of biosamples and associated data. Since tissue samples of a clinical biobank are commonly collected at surgical theaters in satellite locations or hospitals in remote areas, adequate temporary storage of the biosample is mandatory to maintain optimal sample quality.
View Article and Find Full Text PDFObjectives: Printed splints may be an alternative as a treatment of functional disorders in addition to physical, manual and physiological therapeutics. The objective is to investigate whether different 3D printed splint materials, which are fabricated with different fabrication orientation and post-processing (washing and post polymerisation) exhibit different in vitro cytotoxicity.
Material And Methods: 600 discs (n = 25 per group, 5mmx1mm) were printed (P30+ DLP-printer, Straumann, CH; 100 µm layer) from splint materials (M1: Luxaprint OrthoPlus, DMG, G; M2: V-Print Splint, Voco, G).
Odontogenic MSCs are vulnerable to LPS-triggered bacterial infections, and they respond by secreting inflammatory mediators, such as IL-6, and with mineralization. Since both processes might be prone to a disturbance of the redox homeostasis, the oxidative stress influence on vital functions of human dental pulp cells (HPCs) was investigated. With these aims, a model of LPS-stimulated primary HPCs was established, and anti- and pro-oxidant substances were administered up to 21 days to measure inflammation and mineralization parameters.
View Article and Find Full Text PDFInducible nitric oxide synthase (iNOS) is a crucial enzyme involved in monocyte cell response towards inflammation, and it is responsible for the production of sustained amounts of nitric oxide. This free radical molecule is involved in the defense against pathogens; nevertheless, its continuous and dysregulated production contributes to the development of several pathological conditions, including inflammatory and autoimmune diseases. In the present study, we investigated the effects of two new iNOS inhibitors, i.
View Article and Find Full Text PDFLow concentrations of carbon monoxide (CO) were reported to exhibit anti-inflammatory effects when administered in cells by suitable chemotypes such as CO releasing molecules (CO-RMs). In addition, the pH-modulating abilities of specific carbonic anhydrase isoforms played a crucial role in different models of inflammation and neuropathic pain. Herein, we report a series of chemical hybrids consisting of a Carbonic Anhydrase (CA) inhibitor linked to a CO-RM tail (CAI/CO-RMs).
View Article and Find Full Text PDFObjective: The release of inflammatory cytokines from antigen-stimulated cells of the immune system is inhibited by resin monomers such as 2-hydroxyethyl methacrylate (HEMA). Although the formation of oxidative stress in cells exposed to HEMA is firmly established, the mechanism behind the inhibited cytokine secretion is only partly known. The present investigation presents evidence regarding the role of HEMA-induced oxidative stress in the secretion of the pro-inflammatory cytokine TNFα from cells exposed to the antigens LTA (lipoteichoic acid) or LPS (lipopolysaccharide) of cariogenic microorganisms using BSO (L-buthionine sulfoximine) or NAC (N-acetyl cysteine) to inhibit or stabilize the amounts of the antioxidant glutathione.
View Article and Find Full Text PDFBackground: Dental odontoblasts produce dentin mineralized matrix, trigger immune responses and act as sensory cells. The understanding of the mechanisms of these functions has been particularly restricted due to the lack of odontoblasts being cultivable in vitro. Because of the lack of specific markers to identify cells of the odontoblastic lineage, properties of the cells isolated from the dentin-pulp interface were compared to dental pulp cells, periodontal ligament cells, osteoblasts, skin fibroblasts, epithelial cells (A549) and HeLa in the present study.
View Article and Find Full Text PDFPurpose: The effect of Actovegin® was investigated on PMA- and LPS-induced human peripheral blood mononuclear cells (PBMCs).
Methods: PBMCs (1 × 10 cells/ml) from five blood donors (2 f, 3 m; 45-55 years) were grown in medium and exposed to Actovegin® in the presence or absence of PMA or LPS. Supernatants were collected to assess the concentration of cytokines (TNF-α, IL-1beta, IL-6 and IL-10).
Purpose: The effects of four different self-adhesive resin cement materials on cell viability and apoptosis after direct and indirect exposure were evaluated using different cell culture techniques.
Materials And Methods: Self-adhesive cements were applied to NIH/3T3 mouse fibroblasts by the extract test method, cell culture inserts, and dentin barrier test method. After exposure periods of 24 h and 72 h, the cytotoxicity of these self-adhesive materials was evaluated using the MTT assay (viability) and the Annexin-V-FITC/PI staining (apoptosis).
Composites and porous scaffolds produced with biodegradable natural polymers are very promising constructs which show high biocompatibility and suitable mechanical properties, with the possibility to be functionalized with growth factors involved in bone formation. For this purpose, alginate/hydroxyapatite (Alg/HAp) composite scaffolds using a novel production design were successfully developed and tested for their biocompatibility and osteoconductive properties in vitro. Redox homeostasis is crucial for dental pulp stem cell (DPSC) differentiation and mineralized matrix deposition, and interleukin-6 (IL-6) was found to be involved not only in immunomodulation but also in cell proliferation and differentiation.
View Article and Find Full Text PDFHuman dentin is not only a composite material of a collagenous matrix and mineral to provide strength and elasticity to teeth, but also a precious reservoir full of bioactive proteins. They are released after demineralization caused by bacterial acids in carious lesions, by decalcifying irrigants or dental materials and they modulate tissue responses in the underlying dental pulp. This work describes a first-time analysis of the proteome of human dentin using a shotgun proteomic approach that combines three different protein fractionation methods.
View Article and Find Full Text PDFObjective: Resin monomers like 2-hydroxyethyl methacrylate (HEMA) interfere with effects induced by stressors such as lipopolysaccharide (LPS) released from cariogenic microorganisms. In this study, mechanisms underlying monomer-induced inhibition of the LPS-stimulated secretion of inflammatory cytokines from immunocompetent cells were investigated.
Methods: Secretion of pro-inflammatory cytokines TNF-α, IL-6 and the anti-inflammatory IL-10 from RAW264.
Tissue engineering is widely recognized as a promising approach for bone repair and reconstruction. Several attempts have been made to achieve materials that must be compatible, osteoconductive, and osteointegrative and have mechanical strength to provide a structural support. Composite scaffolds consisting in biodegradable natural polymers are very promising constructs.
View Article and Find Full Text PDFObjectives: The aim of this study was to evaluate the cytotoxicity and the influence of bleaching agents on immunologically cell surface antigens of murine macrophages in vitro.
Materials And Methods: RAW 264.7 cells were exposed to bleaching gel extracts (40% hydrogen peroxide or 20% carbamide peroxide) and different HO concentrations after 1 and 24-h exposure periods and 1-h exposure and 23-h recovery.
Objective: Resin monomers released from unpolymerized dental adhesives or composites and bacterial products like lipopolysaccharide (LPS) or lipoteichoic (LTA) are simultaneously present in specific applications following treatment of deep caries lesions. This review is focused on evidence concerning cell responses as a result of the interactions between adaptive mechanisms activated by resin monomers and signaling pathways of the immune response triggered by LPS or LTA originating from cariogenic microorganisms.
Methods: Current understanding of dental caries progression and pathways in eukaryotic cells in response to LPS stimulation in a clinical situation as well as cell reactions to oxidative stress caused by resin monomers is analyzed based on publications available through online databases.
Objective: Oxidative stress induced by compounds of dental composites like 2-hydroxyethyl methacrylate (HEMA) due to excess formation of reactive oxygen species (ROS) disturbs vital cell functions leading to apoptosis. The sources of ROS in cells exposed to resin monomers are unknown. The present study investigates functions of flavin-containing ROS and RNS (reactive nitrogen species) producing enzymes in cells exposed to HEMA.
View Article and Find Full Text PDFObjective: Lipopolysaccharide (LPS) from cariogenic microorganisms and resin monomers like HEMA (2-hydroxyethyl methacrylate) included in dentin adhesive are present in a clinical situation in deep dentinal cavity preparations. Here, cell survival, expression of proteins related to redox homeostasis, and viability of mouse macrophages exposed to LPS and HEMA were analyzed with respect to the influence of oxidative stress.
Methods: Cell survival of RAW264.
Objectives: The photoinitiator diphenyl-(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) is more reactive than a camphorquinone/amine (CQ) system, and TPO-based adhesives obtained a higher degree of conversion (DC) with fewer leached monomers. The hypothesis tested here is that a TPO-based adhesive is less toxic than a CQ-based adhesive.
Methods: A CQ-based adhesive (SBU-CQ) (Scotchbond Universal, 3M ESPE) and its experimental counterpart with TPO (SBU-TPO) were tested for cytotoxicity in human pulp-derived cells (tHPC).
Oxidative stress due to increased formation of reactive oxygen species (ROS) in target cells of dental resin monomers like 2-hydroxyethyl methacrylate (HEMA) is a major mechanism underlying the disturbance of vital cell functions including mineralization and differentiation, responses of the innate immune system, and the induction of cell death via apoptosis. Although a shift in the equilibrium between cell viability and apoptosis is related to the non-enzymatic antioxidant glutathione (GSH) in HEMA-exposed cells, the major mechanisms of adaptive antioxidant cell responses to maintain cellular redox homeostasis are still unknown. The present study provides insight into the induction of a communicating network of pathways under the control of the redox-sensitive transcription factor Nrf2, a major transcriptional activator of genes coding for enzymatic antioxidants.
View Article and Find Full Text PDFObjectives: Bleaching treatments can affect on the polymer network of dental composites. This study was performed to evaluate the influence of different bleaching treatments on the elution of composite components.
Methods: The composites Tetric EvoCeram(®), CLEARFIL™ AP-X, Tetric EvoFlow(®), Filtek™ Supreme XT, Ceram X(®) mono+, Admira and Filtek™ Silorane were treated with the bleaching gels Opalescence PF 15% (PF 15%) for 5h and PF 35% (PF 35%) for 30 min and then stored in methanol and water for 24h and 7 d.
Objectives: Unpolymerized (co)monomers and additives can be released from resin based composites (RBCs) and can enter the human organism. In this study, the binding of ingredients from composites to salivary proteins and plasma proteins was investigated.
Methods: The composites investigated were Admira(®) flow, Venus(®) Diamond flow, Filtek™ Supreme XTE flow, Tetric EvoCeram(®), Tetric EvoFlow(®).
Resin monomers of dental composites like 2-hydroxyethyl methacrylate (HEMA) disturb cell functions including responses of the innate immune system, mineralization and differentiation of dental pulp-derived cells, or induce cell death via apoptosis. The induction of apoptosis is related to the availability of the antioxidant glutathione, although a detailed understanding of the signaling pathways is still unknown. The present study provides insight into the causal relationship between oxidative stress, oxidative DNA damage, and the specific signaling pathway leading to HEMA-induced apoptosis in RAW264.
View Article and Find Full Text PDFObjectives: The initial adhesion of microorganisms to clinically used dental biomaterials is influenced by physico-chemical parameters like hydrophobicity and pre-adsorption of salivary proteins. Here, polymethyl methacrylate (PMMA), polyethylene (PE), polytetrafluoroethylene (PTFE), silicone (Mucopren soft), silorane-based (Filtek Silorane) and methacrylate-based (Tetric EvoCeram) dental composites, a conventional glassionomer cement as well as cobalt-chromium-molybdenum (Co28Cr6Mo) and titanium (Ti6Al4V) were tested for adsorption of salivary proteins and adhesion of Streptococcus gordonii DL1.
Methods: Wettability of material surfaces precoated with salivary proteins or left in phosphate-buffered saline was determined by the measurement of water contact angles.