CASSCF and CASPT2/6-31G(d) calculations have been performed on the low-lying electronic states of three, non-Kekule, hydrocarbon diradicals: 2-methylenedihydrophenalene-1,3-diyl (2), trimethylenemethane (3), and 1,8-naphthoquinodimethane (4). The computational results reveal how addition of ferromagnetic coupling groups (1,8-naphtho to 3 and vinylidene to 4) modulates the energy differences between the three lowest electronic states of 2-4. The most dramatic effect is the 30.
View Article and Find Full Text PDF6,9-Di(tert-butyl)-1-methyltetrazolo[1,5-a]perimidine (1) has been synthesized from naphthalene in seven steps. The EPR spectra, recorded after irradiation of 1 in a butyronitrile matrix at 77 K (lambda = 351 nm) and in Ar and Xe matrixes at 4.6 K (lambda > or = 345 nm), showed a six-line, high-field signal (Delta m(S) = +/- 1), centered at 3350 G in butyronitrile, along with a half-field signal (Delta m(S) = +/- 2), which is characteristic for triplets.
View Article and Find Full Text PDF1,4-Dialkyl-5-(N-alkylimino)-4,5-dihydro-1H-tetrazoles were prepared in high yields by deprotonation with sodium hydride of 1,4-dialkyl-5-(N-alkylamino)tetrazolium salts that were adorned with two or three different alkyl groups, including methyl, trideuteriomethyl, and tert-butyl groups. Direct irradiation (lambda > 255 nm) at -60 degrees C yielded molecular nitrogen and mixtures of 1,2-dialkyl-3-(N-alkylimino)diaziridines (83-87%) along with carbodiimides (13-17%) arising by 1,3-dipolar cycloreversion. The missing 1,3-dipoles, alkyl azides, did not survive photolysis.
View Article and Find Full Text PDFMonocyclic iminoaziridines and exo-endo diastereomers of spirocyclic iminoaziridines that are derived from norbornane are prepared in batches of up to 10 g to foster applications as building blocks in syntheses. N,N'-Disubstituted alpha-haloamidines, which are readily available in two steps from N-substituted alpha-halocarboxamides, are 1,3-dehydrohalogenated by strong bases such as alkali-metal hydrides or tert-butoxides to afford distillable oils or low-melting solids, which consist of slowly interconverting E-Z diastereomers of the title compounds. The scope and limitations are outlined for this reaction.
View Article and Find Full Text PDF[reaction: see text] UV/vis spectra of thermochromic semibullvalenes 1 and barbaralanes 2, which undergo rapid degenerate Cope rearrangements, display temperature-dependent shoulders (1b, 1d, 1e) or absorption maxima (1c, 2c, 2f) at the low-energy side of their strong UV bands. These long-wavelength absorptions are ascribed to Franck-Condon transitions from delocalized structures 1(deloc) and 2(deloc). Gibbs free energy differences, DeltaG*, between delocalized and localized forms were calculated from the temperature dependence of the long-wavelength absorptions.
View Article and Find Full Text PDF[structure: see text] B3LYP/6-31G* calculations have been used to investigate the origins of the relative barrier heights for the degenerate Cope rearrangements of semibullvalene (1), barbaralane (2), bullvalene (3), and dihydrobullvalene (4). We conclude from our calculations that, of the four transition structures (TSs), that for rearrangement of 1 has the smallest amount of interallylic bonding. Nevertheless, relief of strain in the reactant confers on 1 the lowest barrier to Cope rearrangement.
View Article and Find Full Text PDFTime-dependent B3LYP/6-31G calculations have been performed at the optimized C(2) or C(2v) geometries of several substituted semibullvalenes (1(deloc)) and barbaralanes (2(deloc)), to compare the computed vertical electronic excitation energies with the temperature-dependent, long-wavelength absorptions that have been observed in the UV/vis spectra of some of these compounds by Quast and co-workers. The excellent agreement between the calculated vertical excitation energies and the observed values of lambda(max) provides strong support for the identification of the bishomoaromatic species 1(deloc) and 2(deloc) as the source of these absorptions. Furthermore, the CN stretching frequencies, computed for the C(2) geometry of 1,5-dimethyl-2,6-dicyano-4,8-diphenylsemibullvalene (1f(deloc)), fit the low-frequency absorptions seen in the IR spectrum of 1f, thus furnishing independent evidence that bishomoaromatic geometries of semibullvalenes have, in fact, been observed spectroscopically.
View Article and Find Full Text PDF