Experimental results on the charge-state-dependent sputtering of metallic gold nanoislands are presented. Irradiations with slow highly charged ions of metallic targets were previously considered to show no charge state dependent effects on ion-induced material modification, since these materials possess enough free electrons to dissipate the deposited potential energy before electron-phonon coupling can set in. By reducing the size of the target material down to the nanometer regime and thus enabling a geometric energy confinement, a possibility is demonstrated to erode metallic surfaces by charge state related effects in contrast to regular kinetic sputtering.
View Article and Find Full Text PDFWe present a direct way to generate hillock-like nanostructures on CaF(111) ionic crystals by kinetic energy deposition upon Au-cluster irradiation. In the past, the formation of similar nanostructures has been observed for both slow highly charged ions and swift heavy ions. However, in these cases, potential energy deposition of highly charged ions or the electronic energy loss of fast heavy ions, respectively, first leads to strong electronic excitation of the target material before the excitation energy is transferred to the lattice by efficient electron-phonon coupling.
View Article and Find Full Text PDF