Publications by authors named "Helmut Lammer"

Article Synopsis
  • The article discusses the environmental conditions necessary for aerobe organisms to thrive, focusing on the atmospheric limits for biological life forms.
  • It defines Earth-like habitats as rocky exoplanets within the habitable zone that have nitrogen-oxygen-dominated atmospheres with minimal carbon dioxide, where complex life could potentially evolve.
  • The authors present a new formula to estimate the occurrence rate of these Earth-like habitats in the Galaxy, emphasizing that future astronomical observations will enhance our understanding of exoplanet atmospheres.
View Article and Find Full Text PDF

In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N-O-dominated atmospheres with minor amounts of CO can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable.

View Article and Find Full Text PDF
Article Synopsis
  • The Comet Interceptor mission aims to explore a long-period comet or an interstellar object entering our Solar System, with a focus on its surface composition, shape, and the composition of its gas and dust.
  • Proposed to the European Space Agency in 2018 and approved in June 2022, it is set to launch in 2029 alongside the Ariel mission, utilizing a low-cost approach that allows it to wait for a suitable target comet.
  • The mission will feature a main probe and two sub-probes (B1 from JAXA and B2), providing simultaneous, detailed 3D information about the comet and its interaction with the solar wind, making it unique compared to previous missions.
View Article and Find Full Text PDF

Here we examine how our knowledge of present day Venus can inform terrestrial exoplanetary science and how exoplanetary science can inform our study of Venus. In a superficial way the contrasts in knowledge appear stark. We have been looking at Venus for millennia and studying it via telescopic observations for centuries.

View Article and Find Full Text PDF

Pebbles of millimeter sizes are abundant in protoplanetary discs around young stars. Chondrules inside primitive meteorites-formed by melting of dust aggregate pebbles or in impacts between planetesimals-have similar sizes. The role of pebble accretion for terrestrial planet formation is nevertheless unclear.

View Article and Find Full Text PDF

The amount of nitrogen (N) present in the atmosphere when life evolved on our planet is central for understanding the production of prebiotic molecules and, hence, is a fundamental quantity to constrain. Estimates of atmospheric molecular nitrogen partial surface pressures during the Archean, however, widely vary in the literature. In this study, we apply a model that combines newly gained insights into atmospheric escape, magma ocean duration, and outgassing evolution.

View Article and Find Full Text PDF

Since the Archean, N has been a major atmospheric constituent in Earth's atmosphere. Nitrogen is an essential element in the building blocks of life; therefore, the geobiological nitrogen cycle is a fundamental factor in the long-term evolution of both Earth and Earth-like exoplanets. We discuss the development of Earth's N atmosphere since the planet's formation and its relation with the geobiological cycle.

View Article and Find Full Text PDF

We study the origin and escape of catastrophically outgassed volatiles (H2O, CO2) from exomoons with Earth-like densities and masses of 0.1, 0.5 and 1 M⊕ orbiting an extra-solar gas giant inside the habitable zone of a young active solar-like star.

View Article and Find Full Text PDF

Transit observations of HD 209458b in the stellar Lyman-α(Lyα) line revealed strong absorption in both blue and red wings of the line interpreted as hydrogen atoms escaping from the planet's exosphere at high velocities. The following sources for the absorption were suggested: acceleration by the stellar radiation pressure, natural spectral line broadening, or charge exchange with the stellar wind. We reproduced the observation by means of modeling that includes all aforementioned processes.

View Article and Find Full Text PDF

We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.

View Article and Find Full Text PDF

The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars.

View Article and Find Full Text PDF

A scientific forum on "The Future Science of Exoplanets and Their Systems," sponsored by Europlanet and the International Space Science Institute (ISSI) and co-organized by the Center for Space and Habitability (CSH) of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history.

View Article and Find Full Text PDF

Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry.

View Article and Find Full Text PDF

The Kelvin-Helmholtz instability gained scientific attention after observations at Venus by the spacecraft Pioneer Venus Orbiter gave rise to speculations that the instability contributes to the loss of planetary ions through the formation of plasma clouds. Since then, a handful of studies were devoted to the Kelvin-Helmholtz instability at the ionopause and its implications for Venus. The aim of this study is to investigate the stability of the two instability-relevant boundary layers around Venus: the induced magnetopause and the ionopause.

View Article and Find Full Text PDF

We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres.

View Article and Find Full Text PDF

We describe future steps in the direct characterization of habitable exoplanets subsequent to medium and large mission projects currently underway and investigate the benefits of spectroscopic and direct imaging approaches. We show that, after third- and fourth-generation missions have been conducted over the course of the next 100 years, a significant amount of time will lapse before we will have the capability to observe directly the morphology of extrasolar organisms.

View Article and Find Full Text PDF

The European Space Agency and other space agencies such as NASA recognize that the question with regard to life beyond Earth in general, and the associated issue of the existence and study of exoplanets in particular, is of paramount importance for the 21(st) century. The new Cosmic Vision science plan, Cosmic Vision 2015-2025, which is built around four major themes, has as its first theme: "What are the conditions for planet formation and the emergence of life?" This main theme is addressed through further questions: 1) How do gas and dust give rise to stars and planets? 2) How will the search for and study of exoplanets eventually lead to the detection of life outside Earth (biomarkers)? 3) How did life in the Solar System arise and evolve? Although ESA has busied itself with these issues since the beginning of the Darwin study in 1996, it has become abundantly clear that, as these topics have evolved, only a very large effort, addressed from the ground and from space with the utilization of different instruments and space missions, can provide the empirical results required for a complete understanding. The good news is that the problems can be addressed and solved within a not-too-distant future.

View Article and Find Full Text PDF

We present and discuss the criteria for selecting potential target stars suitable for the search for Earth-like planets, with a special emphasis on the stellar aspects of habitability. Missions that search for terrestrial exoplanets will explore the presence and habitability of Earth-like exoplanets around several hundred nearby stars, mainly F, G, K, and M stars. The evaluation of the list of potential target systems is essential in order to develop mission concepts for a search for terrestrial exoplanets.

View Article and Find Full Text PDF

We discuss how to read a planet's spectrum to assess its habitability and search for the signatures of a biosphere. After a decade rich in giant exoplanet detections, observation techniques have advanced to a level where we now have the capability to find planets of less than 10 Earth masses (M(Earth)) (so-called "super Earths"), which may be habitable. How can we characterize those planets and assess whether they are habitable? This new field of exoplanet search has shown an extraordinary capacity to combine research in astrophysics, chemistry, biology, and geophysics into a new and exciting interdisciplinary approach to understanding our place in the Universe.

View Article and Find Full Text PDF

After Earth's origin, our host star, the Sun, was shining 20-25% less brightly than today. Without greenhouse-like conditions to warm the atmosphere, our early planet would have been an ice ball, and life may never have evolved. But life did evolve, which indicates that greenhouse gases must have been present on early Earth to warm the planet.

View Article and Find Full Text PDF

The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H(2)O, have very specific properties.

View Article and Find Full Text PDF

The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory.

View Article and Find Full Text PDF

The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.

View Article and Find Full Text PDF

To estimate the occurrence of terrestrial exoplanets and maximize the chance of finding them, it is crucial to understand the formation of planetary systems in general and that of terrestrial planets in particular. We show that a reliable formation theory should not only explain the formation of the Solar System, with small terrestrial planets within a few AU and gas giants farther out, but also the newly discovered exoplanetary systems with close-in giant planets. Regarding the presently known exoplanets, we stress that our current knowledge is strongly biased by the sensitivity limits of current detection techniques (mainly the radial velocity method).

View Article and Find Full Text PDF