Cardiac arrhythmias significantly contribute to mortality in Duchenne muscular dystrophy (DMD), a severe muscle illness caused by mutations in the gene encoding for the intracellular protein dystrophin. A major source for arrhythmia vulnerability in patients with DMD is impaired ventricular impulse conduction, which predisposes for ventricular asynchrony, decreased cardiac output, and the development of reentrant circuits. Using the dystrophin-deficient mouse model for human DMD, we previously reported that the lack of dystrophin causes a significant loss of peak Na current () in ventricular cardiomyocytes.
View Article and Find Full Text PDFThe muscular dystrophies caused by dystrophin deficiency, the so-called dystrophinopathies, are associated with impaired cardiac contractility and arrhythmias, which considerably contribute to disease morbidity and mortality. Impaired Ca handling in ventricular cardiomyocytes has been identified as a causative factor for complications in the dystrophic heart, and restoration of normal Ca handling in myocytes has emerged as a promising new therapeutic strategy. In the present study, we explored the hypothesis that ivabradine, a drug clinically approved for the treatment of heart failure and stable angina pectoris, improves Ca handling in dystrophic cardiomyocytes and thereby enhances contractile performance in the dystrophic heart.
View Article and Find Full Text PDFBackground And Objectives: Spinal cord injury (SCI) disrupts the fine-balanced interaction between the CNS and immune system and can cause maladaptive aberrant immune responses. The study examines emerging autoantibody synthesis after SCI with binding to conformational spinal cord epitopes and surface peptides located on the intact neuronal membrane.
Methods: This is a prospective longitudinal cohort study conducted in acute care and inpatient rehabilitation centers in conjunction with a neuropathologic case-control study in archival tissue samples ranging from acute injury (baseline) to several months thereafter (follow-up).
Electrical activity in neurons is highly energy demanding and accompanied by rises in cytosolic Ca Cytosolic Ca, in turn, secures energy supply by pushing mitochondrial metabolism either through augmented NADH (nicotinamide adenine dinucleotide) transfer into mitochondria via the malate-aspartate shuttle (MAS) or via direct activation of dehydrogenases of the TCA cycle after passing into the matrix through the mitochondrial Ca uniporter (MCU). Another Ca-sensitive booster of mitochondrial ATP synthesis is the glycerol-3-phosphate shuttle (G3PS), whose role in neuronal energy supply has remained elusive. Essential components of G3PS are expressed in hippocampal neurons.
View Article and Find Full Text PDFT-type Ca channels are strongly expressed and important in the developing heart. In the adult heart, these channels play a significant role in pacemaker tissues, but there is uncertainty about their presence and physiological relevance in the working myocardium. Here, we show that the T-type Ca channel isoforms Cav3.
View Article and Find Full Text PDFIvabradine is clinically administered to lower the heart rate, proposedly by inhibiting hyperpolarization-activated cyclic nucleotide-gated cation channels in the sinoatrial node. Recent evidence suggests that voltage-gated sodium channels (VGSC) are inhibited within the same concentration range. VGSCs are expressed within the sinoatrial node and throughout the conduction system of the heart.
View Article and Find Full Text PDFPsilocybin, a hallucinogen contained in "magic" mushrooms, holds great promise for the treatment of various psychiatric disorders, and early clinical trials are encouraging. Adverse cardiac events after intake of high doses of psilocybin and a trial reporting QT interval prolongation in the electrocardiogram attributed to the drug's main metabolite, psilocin, gave rise to safety concerns. Here we show that clinical concentrations of psilocin do not cause significant human ether-a-go-go-related gene (hERG) potassium channel inhibition, a major risk factor for adverse cardiac events.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
July 2021
Objective: To report an unusual clinical phenotype of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) encephalitis and describe associated neuropathologic findings.
Methods: We retrospectively investigated 3 AMPAR encephalitis patients with autoimmune global hippocampal amnesia using comprehensive cognitive and neuropsychologic assessment, antibody testing by in-house tissue-based and cell-based assays, and neuropathologic analysis of brain autopsy tissue including histology and immunohistochemistry.
Results: Three patients presented with acute-to-subacute global amnesia without affection of cognitive performance, attention, concentration, or verbal function.
Since their discovery in the 1960s, the term paroxysmal depolarization shift (PDS) has been applied to a wide variety of reinforced neuronal discharge patterns. Occurrence of PDS as cellular correlates of electrographic spikes during latent phases of insult-induced rodent epilepsy models and their resemblance to giant depolarizing potentials (GDPs) nourished the idea that PDS may be involved in epileptogenesis. Both GDPs and - in analogy - PDS may lead to progressive changes of neuronal properties by generation of pulsatile intracellular Ca elevations.
View Article and Find Full Text PDFBesides skeletal muscle abnormalities, Duchenne muscular dystrophy (DMD) patients present with dilated cardiomyopathy development, which considerably contributes to morbidity and mortality. Because the mechanisms responsible for the cardiac complications in the context of DMD are largely unknown, evidence-based therapy approaches are still lacking. This has increased the need for basic research efforts into animal models for DMD.
View Article and Find Full Text PDFL-type voltage-gated Ca channels (LTCCs) are implicated in neurodegenerative processes and cell death. Accordingly, LTCC antagonists have been proposed to be neuroprotective, although this view is disputed, because intentional LTCC activation can also have beneficial effects. LTCC-mediated Ca influx influences mitochondrial function, which plays a crucial role in the regulation of cell viability.
View Article and Find Full Text PDFNeuronal nitric oxide synthase (nNOS) is considered a regulator of Ca1.2 L-type Ca channels and downstream Ca cycling in the heart. The commonest view is that nitric oxide (NO), generated by nNOS activity in cardiomyocytes, reduces the currents through Ca1.
View Article and Find Full Text PDFLipid-gated TRPC channels are highly expressed in cardiovascular and neuronal tissues. Exerting precise pharmacological control over their activity in native cells is expected to serve as a basis for the development of novel therapies. Here we report on a new photopharmacological tool that enables manipulation of TRPC3 channels by light, in a manner independent of lipid metabolism and with higher temporal precision than lipid photopharmacology.
View Article and Find Full Text PDFDiseases arising from misfolding of SLC6 transporters have been reported over recent years, e.g. folding-deficient mutants of the dopamine transporter and of the glycine transporter-2 cause infantile/juvenile Parkinsonism dystonia and hyperekplexia, respectively.
View Article and Find Full Text PDFParoxysmal depolarization shifts (PDS) have been described by epileptologists for the first time several decades ago, but controversy still exists to date regarding their role in epilepsy. In addition to the initial view of a lack of such a role, seemingly opposing hypotheses on epileptogenic and anti-ictogenic effects of PDS have emerged. Hence, PDS may provide novel targets for epilepsy therapy.
View Article and Find Full Text PDFSeveral shortcomings with currently available pharmacotherapy of epilepsy necessitate the search for new drug targets. Paroxysmal depolarization shifts (PDS) represent the cellular correlates of electrographic (e.g.
View Article and Find Full Text PDFThis review provides an overview on different antibody test methods that can be applied in cases of suspected paraneoplastic neurological syndromes (PNS) and anti-neuronal autoimmune encephalitis (AIE) in order to explain their diagnostic value, describe potential pitfalls and limitations, and discuss novel approaches aimed at discovering further autoantibodies. Onconeuronal antibodies are well-established biomarkers for PNS and may serve as specific tumor markers. The recommended procedure to detect onconeuronal antibodies is a combination of indirect immunohistochemistry on fixed rodent cerebellum and confirmation of the specificity by line assays.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD), caused by mutations in the gene encoding for the cytoskeletal protein dystrophin, is linked with severe cardiac complications including cardiomyopathy development and cardiac arrhythmias. We and others recently reported that currents through L-type calcium (Ca) channels were significantly increased, and channel inactivation was reduced in dystrophin-deficient ventricular cardiomyocytes derived from the mdx mouse, the most commonly used animal model for human DMD. These gain-of-function Ca channel abnormalities may enhance the risk of Ca-dependent arrhythmias and cellular Ca overload in the dystrophic heart.
View Article and Find Full Text PDFRetigabine, currently used as antiepileptic drug, has a wide range of potential medical uses. Administration of the drug in patients can lead to QT interval prolongation in the electrocardiogram and to cardiac arrhythmias in rare cases. This suggests that the drug may perturb the electrical properties of the heart, and the underlying mechanisms were investigated here.
View Article and Find Full Text PDFObjective: An increase of neuronal Ca 1.3 L-type calcium channels (LTCCs) has been observed in various animal models of epilepsy. However, LTCC inhibitors failed in clinical trials of epileptic treatment.
View Article and Find Full Text PDFKey Points: Phosphatidylinositol-4,5-bisphosphate (PIP ) is a key regulator of many membrane proteins, including voltage-gated Kv7.2 channels. In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP -binding domains in Kv7.
View Article and Find Full Text PDFKir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current I, which controls the resting membrane potential and the final phase of action potential repolarization.
View Article and Find Full Text PDFBackground And Purpose: The Kv 7 channel activator flupirtine is a clinical analgesic characterized as 'selective neuronal potassium channel opener'. Flupirtine was found to exert comparable actions at GABAA receptors and Kv 7 channels in neurons of pain pathways, but not in hippocampus.
Experimental Approach: Expression patterns of GABAA receptors were explored in immunoblots of rat dorsal root ganglia, dorsal horns and hippocampi using antibodies for 10 different subunits.
Background/aims: Dysferlin plays a decisive role in calcium-dependent membrane repair in myocytes. Mutations in the encoding DYSF gene cause a number of myopathies, e.g.
View Article and Find Full Text PDFObjective: Within its range of therapeutic plasma concentrations, the anticonvulsant retigabine (ezogabine) is believed to selectively act on Kv7 channels. Here, the contribution of specific γ-aminobutyric acid (GABA)A receptor subtypes to the antiseizure effects of retigabine was investigated.
Methods: Using patch-clamp recordings, seizure-like activity, tonic currents, and GABA-induced currents in hippocampal neurons were tested for their sensitivity toward retigabine, as were recombinant GABAA receptors expressed in tsA 201 cells.