Publications by authors named "Helmut Knapp"

Microinjection is the most flexible transfection method in terms of choice of reagents to inject into cells. But this method lacks the high throughput to compete with less flexible methods like chemical- or viral-based approaches. Various approaches have been pursued to increase the throughput by automating the microinjection process.

View Article and Find Full Text PDF

The global demand for the reduction of animal testing has led to the emergence of Zebrafish eggs/larvae as model organisms to replace current adult animal testing in, for example, toxicity testing. Because of the egg size (diameter 1.6mm) and the relatively easy maintenance of Zebrafish farms the eggs also offer high-throughput screening (HTS).

View Article and Find Full Text PDF

A microfluidic pump based on electroosmosis of the second kind was designed and fabricated. Experimental results using DC and AC voltages showed a close to second-order relationship between flow and voltage, in good agreement with theory. The experimental flow rates were considerably lower than the predicted maximum for the micropumps, which can be attributed to the hydrodynamic resistance of the channel network.

View Article and Find Full Text PDF

A multiplexed immunoassay-based antibiotic sensing device integrated in a lab-on-a-chip format is described. The approach is multidisciplinary and involves the convergent development of a multi-antibiotic competitive immunoassay based on sensitive wavelength interrogated optical sensor (WIOS) technology and a polymer-based self-contained microfluidic cartridge. Immunoassay solutions are pressure-driven through external and concerted actuation of a single syringe pump and multiposition valve.

View Article and Find Full Text PDF

Block copolymer thin films fabricated from polystyrene-polyferrocenylsilane (PS-b-PFS) block copolymers on silicon substrates were used as precursors of well-ordered, nanosized growth catalysts for carbon nanotubes (CNTs). The size of the catalytic domains was tuned by changing the molecular weight of the block copolymer, enabling control of the diameter of the CNTs grown from these substrates. CNT growth on catalytic substrates with larger organometallic domain sizes, using acetylene as a carbon source, resulted in enhanced amounts of CNT deposition compared to smaller PFS domains, which exhibited low catalytic activity.

View Article and Find Full Text PDF
Article Synopsis
  • - The study presents a fast and effective method for immobilizing probe beads on a lab-on-chip system using dielectrophoresis, allowing precise placement within 10 to 120 seconds.
  • - The method is versatile, accommodating various probe molecule coatings on the beads and ensuring their retention even under high fluid flow conditions after voltage removal.
  • - The researchers successfully demonstrate the method's application by detecting different target molecules, such as streptavidin and mouse IgG, and achieving parallel assays on the same chip.
View Article and Find Full Text PDF

Several preparation methods were developed to investigate the dimensions and surface structure of fluid spaces within cortical bone, using atomic force microscopy (AFM). Of special interest was the morphology of the lacunocanalicular system, which serves as a conduit between osteocytes encased in bone tissue, the intramedullary cavity, blood vessels running through the bone, and the periosteal surface of bone. Fracture and the removal of either the mineral or the organic component is a method by which each component can be investigated at a very high resolution in situ.

View Article and Find Full Text PDF