Publications by authors named "Helmut J Pelzmann"

-acetylaspartate (NAA) is synthesized by aspartate -acetyltransferase (gene: ) from acetyl-coenzyme A and aspartate. In the brain, NAA is considered an important energy metabolite for lipid synthesis. However, the role of NAA in peripheral tissues remained elusive.

View Article and Find Full Text PDF

The discovery of significant amounts of metabolically active brown adipose tissue (BAT) in adult humans renders it a promising target for anti-obesity therapies by inducing weight loss through increased energy expenditure. The components of the N-acetylaspartate (NAA) pathway are highly abundant in BAT. Aspartate N-acetyltransferase (Asp-NAT, encoded by Nat8l) synthesizes NAA from acetyl-CoA and aspartate and increases energy expenditure in brown adipocytes.

View Article and Find Full Text PDF

Adipocyte plasma membrane-associated protein (APMAP) has been described as an adipogenic factor in 3T3-L1 cells with unknown biochemical function; we therefore aimed to investigate the physiologic function of APMAP We generated Apmapknockout mice and challenged them with an obesogenic diet to investigate their metabolic phenotype. We identified a novel truncated adipocyte-specific isoform of APMAP in mice that is produced by alternative transcription. Mice lacking the full-length APMAP protein, the only isoform that is expressed in humans, have an improved metabolic phenotype upon diet-induced obesity, indicated by enhanced insulin sensitivity, preserved glucose tolerance, increased respiratory exchange ratio, decreased inflammatory marker gene expression, and reduced adipocyte size.

View Article and Find Full Text PDF

The importance of peroxisomes for adipocyte function is poorly understood. Herein, we provide insights into the critical role of peroxin 16 (PEX16)-mediated peroxisome biogenesis in adipocyte development and lipid metabolism. Pex16 is highly expressed in adipose tissues and upregulated during adipogenesis of murine and human cells.

View Article and Find Full Text PDF

Our knowledge about adipocyte metabolism and development is steadily growing, yet many players are still undefined. Here, we show that α/β-hydrolase domain containing protein 15 (Abhd15) is a direct and functional target gene of peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipogenesis. In line, Abhd15 is mainly expressed in brown and white adipose tissue and strongly upregulated during adipogenesis in various murine and human cell lines.

View Article and Find Full Text PDF

Background: Fasting induces specific molecular and metabolic adaptions in most organisms. In biomedical research fasting is used in metabolic studies to synchronize nutritional states of study subjects. Because there is a lack of standardization for this procedure, we need a deeper understanding of the dynamics and the molecular mechanisms in fasting.

View Article and Find Full Text PDF

NAT8L (N-acetyltransferase 8-like) catalyzes the formation of N-acetylaspartate (NAA) from acetyl-CoA and aspartate. In the brain, NAA delivers the acetate moiety for synthesis of acetyl-CoA that is further used for fatty acid generation. However, its function in other tissues remained elusive.

View Article and Find Full Text PDF