Our in situ X-ray study shows that a silicon substrate in contact with an undersaturated In(Ge) solution is wetted by an approximately 1 nm thin germanium film, which does not grow any thicker. The results can be understood by the use of thickness-dependent correlated interfacial energies. This near-equilibrium heterogeneous interface structure marks the initial stage of crystal growth before the formation of bulk material, which can only form under conditions of supersaturation.
View Article and Find Full Text PDFAnomalous and nonanomalous surface X-ray diffraction is used to investigate the atomic structure and composition of the yttria-stabilized zirconia (YSZ)(111) surface. By simulation it is shown that the method is sensitive to Y surface segregation, but that the data must contain high enough Fourier components in order to distinguish between different models describing Y/Zr disorder. Data were collected at room temperature after two different annealing procedures.
View Article and Find Full Text PDFWe studied the interaction of oxygen with MgO(100) supported Pd nanoparticles at 10(-5) mbar oxygen pressure and a sample temperature of 570 K. We employed high-resolution X-ray reciprocal space mapping, which allows us to resolve the average particle shape from the quantitative analysis of intensity diffraction rods running perpendicular to corresponding facet surfaces. We identified the oxygen induced formation of nanosized (112) facets which is reversible in a CO atmosphere.
View Article and Find Full Text PDFWe combine X-ray reflectivity and scanning electron microscopy measurements to investigate the mechanisms involved in the growth of vertical arrays of phthalocyanine nanowires directed by templates of Au nanoparticles. The study has been carried out for H(16)CuPc at different substrate temperatures. It is shown that three organic morphologies evolve during the growth: 1D nanostructures on top of the Au nanoparticles, a multilayer film on the substrate and a layer wetting the gold nanoparticles.
View Article and Find Full Text PDFWe present a route to change the "compositional" order of highly crystalline binary layers comprising diindenoperylene and copper-phthalocyanines from two- to one-dimensional periodicity. This is achieved by exchanging fluorine with hydrogen atoms in the phthalocyanines, thereby reducing the C-F···H-C interactions and allowing the interplay of long-range electrostatic interactions in mesoscopic phases. Linear patterns are thus obtained, whose periodicity can be additionally tuned by an appropriate stoichiometry of the components.
View Article and Find Full Text PDFWe explore the different local symmetries in colloidal glasses beyond the standard pair correlation analysis. Using our newly developed X-ray cross correlation analysis (XCCA) concept together with brilliant coherent X-ray sources, we have been able to access and classify the otherwise hidden local order within disorder. The emerging local symmetries are coupled to distinct momentum transfer (Q) values, which do not coincide with the maxima of the amorphous structure factor.
View Article and Find Full Text PDFWe investigated the evolution of quaterrylene thin films on SiO(2) and on an octadecyltrichlorosilane self-assembled monolayer (OTS-SAM) to examine the impact of film strains on the growth processes and evolving structure. Surface modification by SAMs allowed tailoring of the growth process from a Stranski-Krastanov (SK) mode (layer-plus-island) on the SiO(2) surface to a Frank-van der Merwe mode (layer-by-layer) on the OTS surface. Detailed structural analysis by x-ray diffraction techniques confirmed that the SK mode was driven by lattice strain in the initial wetting layers on the SiO(2) surface.
View Article and Find Full Text PDFThe structure of monolayer films of diindenoperylene (DIP) on Cu(111) single crystals has been studied by means of scanning tunneling microscopy (STM). Pronounced film confinement effects are observed, resulting in distinctly different film structures depending upon the substrate terrace width. On wide terraces (exceeding approximately 15 nm in width) a short range ordered structure forms with the DIP molecules aligned along three discrete directions related by 60 degrees rotations.
View Article and Find Full Text PDFThe density deficit of water at hydrophobic interfaces, frequently called the hydrophobic gap, has been the subject of numerous experimental and theoretical studies in the past decade. Recent experiments give values for the interfacial depletion that consistently correspond to less than a monolayer of water. The main question which remained so far unanswered is its origin and the mechanisms affected by the chemistry and molecular geometry of a particular hydrophobic coating.
View Article and Find Full Text PDFWe present a dedicated experimental spin-echo resolved grazing incidence scattering (SERGIS) setup for the investigation of surfaces and thin films exhibiting large lateral length scales. This technique uses the neutron spin to encode one in-plane component of the wave-vector transfer in a grazing angle scattering experiment. Instead of the scattering angle, the depolarization of the scattered beam is measured.
View Article and Find Full Text PDFWe report direct experimental evidence for a layer-dependent step-edge barrier in organic thin film growth, investigating di-indenoperylene on SiO_{2} as an archetypical system. In particular, we show that a noticeable Ehrlich-Schwöbel effect emerges only beyond the 3rd molecular layer, accompanied by mass step-upward diffusion. We further disclose that this thickness dependence of the interlayer transport is directly related to molecular reorientations during the first stages of the growth.
View Article and Find Full Text PDFThe structure of two model room temperature ionic liquids, [BMIM](+)[PF(6)](-) and [BMIM](+)[BF(4)](-), near the solid/liquid interface with charged Al(2)O(3)(0001) (sapphire) was determined with subnanometer resolution by high energy (72.5 keV) x-ray reflectivity. [BMIM](+)[PF(6)](-) exhibits alternately charged, exponentially decaying, near-surface layering.
View Article and Find Full Text PDFA crystalline nanoporous molecular network was tailored by supramolecular assembly of pentacene and F16CuPc on Cu(100). The structure and self-assembly mechanisms of the pure and binary layers were analyzed by STM. F16CuPc films and mixed layers of pentacene/F16CuPc in a ratio of 2:1 show two enantiomorphic chiral domains with high structural order in contrast to pentacene which exhibits no long-range order in pure films.
View Article and Find Full Text PDFRoom-temperature ionic liquids (RTILs) are promising candidates for a broad range of "green" applications, for which their interaction with solid surfaces plays a crucial role. In this high-energy x-ray reflectivity study, the temperature-dependent structures of three ionic liquids with the tris(pentafluoroethyl)trifluorophosphate anion in contact with a charged sapphire substrate were investigated with submolecular resolution. All three RTILs show strong interfacial layering, starting with a cation layer at the substrate and decaying exponentially into the bulk liquid.
View Article and Find Full Text PDFWe have determined the full molecular 3D packing of thin organic films of the archetypical organic n-type semiconductor N, N'-dioctyl-3,4:9,10-perylene tetracarboxylic diimide (PTCDI-C 8) by surface X-ray crystallography. We show that PTCDI-C 8 forms smooth layered films on Al 2O 3 (11-20) with an outstanding degree of molecular order. The thin-film structure is found to consist of a triclinic unit cell with the plane of the aromatic core tilted by 67 +/- 2 degrees with respect to the surface plane, which differs significantly from the bulk structure.
View Article and Find Full Text PDFWe demonstrate a comprehensive study of self-assembled molecular nanowire, including molecular design, one-dimensional crystal growth, resistivity measurement of individual wire, and application to a field-effect transistor. Appropriate molecular design and control of interfacial interactions lead to single crystalline wire growth with an extensive pi-stacking motif. Resistivity measurements of an individual molecular wire indicate that these structural features are advantageous for electrical transport.
View Article and Find Full Text PDFWe present a high energy x-ray reflectivity study of the density profiles of water and ice at hydrophobic and hydrophilic substrates. At the hydrophobic water/octadecyl-trichlorosilane (water-OTS) interface, we find clear evidence for a thin density depletion layer with an integrated density deficit corresponding to approximately 40% of a monolayer of water molecules. We discuss the experimental results in terms of a simple model of hydrophobic/hydrophilic solid-liquid interfaces.
View Article and Find Full Text PDFFive core-cyanated perylene carboxylic diimides end-functionalized with fluorine-containing linear and cyclic substituents have been synthesized and employed in the fabrication of air-stable n-channel organic thin-film field-effect transistors with carrier mobilities up to 0.1 cm2/Vs. The relationships between molecular structure, thin-film morphology, substrate temperature during vacuum deposition, transistor performance, and air stability have been investigated.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2007
We have performed a systematic analysis of the numerical errors contained in the databases used in cluster expansions of multicomponent alloys. Our results underscore the importance of numerical noise in the determination of the effective cluster interactions and in the expansion determination. The relevance of the size of and information contained in the input database is highlighted.
View Article and Find Full Text PDFWe demonstrate that the growth of F16CuPc 1-D nanostructures can be directed by templates of gold nanoparticles. The growth occurs via vapor-phase transport, whereby the gold nanoparticles act as nucleation sites for F16CuPc molecules and promote their anisotropic growth. The F16CuPc 1-D structures adopt diameters of approximately 15-30 nm independent of the nanoparticle size.
View Article and Find Full Text PDFThe surface structure of Cu(100) modified by chloride and iodide has been studied in an electrochemical environment by means of in-situ scanning tunneling microscopy in combination with in-situ surface X-ray diffraction with a particular focus on adsorbate and potential dependent surface relaxation phenomena. For positive potentials close to the on-set of the copper dissolution reaction, the X-ray data disclose an extraordinarily large Cu-Cl bond length of 2.61 A for the c(2 x 2)-Cl phase.
View Article and Find Full Text PDFThe detailed structure of F16CuPc films on SiO2 has been determined by means of in situ grazing incidence X-ray diffraction from the first monolayer to thicker films. In contrast to films of the homologous H16CuPc molecule, the F16CuPc films exhibit the same structure independently from the deposition temperature. The films show a thickness-dependent polymorphism manifested in the in-plane crystal structure, which implies large differences in the molecular tilt within the cofacial stacking of the molecules.
View Article and Find Full Text PDF