Publications by authors named "Helmut Bertrand"

Diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) is a phosphorus-free betaine-lipid analog of phosphatidylcholine (PtdCho) synthesized by many soil bacteria, algae, and nonvascular plants. Synthesis of DGTS and other phosphorus-free lipids in bacteria occurs in response to phosphorus (P) deprivation and results in the replacement of phospholipids by nonphosphorous lipids. The genes encoding DGTS biosynthetic enzymes have previously been identified and characterized in bacteria and the alga Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

The in vivo conformation and replication intermediates of fungal circular mitochondrial plasmids and plasmid-like mitochondrial element (plMEs) were analyzed by two-dimensional gel electrophoresis and electron microscopy. Plasmids with circular restriction maps exist predominantly as circular molecules and were found to replicate by rolling circle mechanisms. However, the reverse transcriptase-encoding Mauriceville plasmid of Neurospora crassa was observed to replicate by two possible mechanisms: one that is consistent with a reverse transcriptase-mediated process and a second one might involve rolling circle DNA replication.

View Article and Find Full Text PDF

In the chestnut blight fungus Cryphonectria parasitica, cytoplasmically transmissible hypovirulence phenotypes are elicited by debilitating mitochondrial DNA (mtDNA) mutations. In virus-free hypovirulent strains of C. parasitica from nature, the presence of a mitochondrial DNA element, named InC9, has been reported to cause similar disease syndromes.

View Article and Find Full Text PDF

In the chestnut-blight fungus Cryphonectria parasitica, cytoplasmically transmissible hypovirulence phenotypes frequently are elicited by double-stranded RNA (dsRNA) virus infections. However, some strains manifest cytoplasmically transmissible hypovirulence traits without containing any mycovirus. In this study, we describe an altered form of mtDNA that is associated with hypovirulence and senescence in a virus-free strain of C.

View Article and Find Full Text PDF

The mt-rns gene of Cryphonectria parasitica is 9872bp long and includes two group I and two group II introns. An analysis of intronic protein-encoding sequences revealed that LAGLIDADG ORFs, which usually are associated with group I introns, were transferred at least twice into group II introns. A plasmid-like mitochondrial element (plME) that appears in high amounts in previously mutagen-induced mit1 and mit2 hypovirulent mutants of the Ep155 standard virulent strain of C.

View Article and Find Full Text PDF

For reasons that are not obvious, sets of related plasmid-like elements that consist of short segments of DNA that overlap the 5' terminal region of the mitochondrial large-subunit rRNA gene sometimes appear spontaneously and become amplified in the mitochondria of some cytochrome-deficient and/or UV-sensitive mutants of Neurospora crassa. These elements are transmitted efficiently through hyphal anastomoses and appear to invade the mitochondria of recipient strains, but they do not cause senescence and at best cause only slight deficiencies in cytochromes a and b even though they are transcribed copiously. Hence, the small elements are not suppressive and, unlike large deletion derivatives of the mitochondrial chromosome, do not displace normal mtDNA molecules in vegetatively propagated mycelia.

View Article and Find Full Text PDF

For reasons that are not obvious, sets of related, small, plasmid-like elements appear spontaneously and become amplified in the mitochondria of some cytochrome-deficient and/or UV-sensitive mutants of Neurospora crassa. These plasmid-like DNAs are multimeric series of circular molecules, each consisting of a finite number of identical tandem repeats of a relatively short mtDNA-derived nucleotide sequence (monomer). The plasmid-like elements that have been characterized in this study consist of monomers that vary in length from 125 to 296 base pairs, depending on the strain of origin.

View Article and Find Full Text PDF

In Neurospora crassa, a nuclear-gene mutant, senescent, derived from a phenotypically normal wild isolate of Neurospora intermedia exhibits a 'death' phenotype. Regardless of the composition of the culture medium, the mycelium ceases to grow in 2-6 subcultures at 26 degrees C and 1 or 2 subcultures at 34 degrees C. Senescence of vegetative mycelium is associated with deficiencies in cytochromes aa3 and b and reduced oxygen uptake.

View Article and Find Full Text PDF

The unique coenocytic anatomy of the mycelia of the filamentous fungi and the formation of anastomoses between hyphae from different mycelia enable the intracellular accumulation and infectious transmission of plasmids and mutant mitochondrial DNAs (mtDNAs) that cause senescence. For reasons that are not fully apparent, mitochondria that are rendered dysfunctional by so-called "suppressive" mtDNA mutations proliferate rapidly in growing cells and gradually displace organelles that contain wild-type mtDNA molecules and are functional. The consequence of this process is senescence and death if the suppressive mtDNA contains a lethal mutation.

View Article and Find Full Text PDF